бесплатно рефераты скачать
  RSS    

Меню

Быстрый поиск

бесплатно рефераты скачать

бесплатно рефераты скачатьРеферат: Воздействие радиационного излучения на операционные усилители

Реферат: Воздействие радиационного излучения на операционные усилители

И. САМКОВ

Научный руководитель проф. Т.М. АГАХАНЯН

Московский государственный инженерно-физический институт  (технический университет)

Обзор по теме

“Воздействие ионизирующего излучения на ИОУ. Схемотехнические способы повышения радиационной стойкости ИОУ при воздействии импульсного ионизирующего излучения ”

2006

СОДЕРЖАНИЕ

1.Основные радиационные эффекты в элементах интегральных микросхем. 

1.1.  Классификация радиационных эффектов.

1.2.  Действие облучения на биполярные транзисторы

1.3.  Действие облучения на униполярные транзисторы

1.4.  Специфика эффектов в зависимости от конструктивно-технологических особенностей ИМС

3

2. Радиационные эффекты в усилительных и дифференциальных каскадах

        2.1. Усилительные каскады.

        2.2. Дифференциальные каскады.

                  2.2.1. Моделирование эффектов в дифф-каскадах.

                  2.2.2. Влияние ИИ на шумовые характеристики.

5

3. Радиационные эффекты в ИОУ

        3.1. Воздействие ИИ на параметры ИОУ.

        3.2. Критериальные параметры.

        3.3. Проектирование радиационно-стойких ИОУ.

        3.4. Прогнозирование эффектов воздействия ИИИ на ИОУ.

        3.5. Имитационные испытания.

        3.6. Уменьшение ВПР электронной аппаратуры.

8
5. Список использованной литературы. 15

                                                 

Основные радиационные эффекты в элементах аналоговых интегральных микросхем.

Классификация радиационных эффектов.

Воздействие ионизирующих излучений (ИИ) на какое-либо вещество сопровождается выделением энергии частицей ИИ. Дальнейшая релаксация полученной энергии и распределение её по объёму вещества происходят в форме различных радиационных эффектов. Принято выделять два вида основных эффектов: смещения (обусловленные смещением атомов из своего нормального положения) и ионизации (связаны с образованием свободных носителей заряда под действием ИИ).

Реакция интегральных микросхем (ИМС) на ионизирующее излучение обусловлена, в первую очередь, зависимостью параметров её элементов от эффектов смещения и ионизации. В свою очередь, конкретный вид энерговыделения (однородное, равновесное и т.п.) может приво­дить к появлению различных эффектов в микросхеме, особенно­сти проявления которых определяются специфическими для нее технологическими и схемотехническими решениями. По причине возникновения эти эффекты можно подразделить на первичные - обусловленные непосредственно энергией излучения, поглощен­ной в ИМС (дефекты смещения, модуляция проводимости и т.п.), и вторичные - обязанные своим происхождением инициирован­ному излучением перераспределению энергии внутренних и сто­ронних источников (радиационное защелкивание, вторичный фо­тотек, пробой и т.п.).

С точки зрения функционирования ИМС в аппаратуре в зависимости от соотношения между длительностью воздействия излучения Ти и временем релаксации вызванного им возбуждения в системе Трел разли­чают остаточные (долговременные Трел>>Ти) и переходные (кратковременные Ти>Трел) изменения параметров приборов.

Ñ Одним из основных параметров, характеризующих переход­ные ионизационные эффекты в элементах ИМС при равновесном энерговыделении, является величина ионизационного тока р-n-переходов, который можно представить в виде двух составляю­щих: 1)мгновенная составляющая, связанная с дрейфом избыточных носителей из обедненной области перехода;

     2)запаздывающая составляющая, связанная с диффузией и дрейфом неравновесных носителей заряда из областей, прилегающих к обедненной области р-n-перехода. Соотношение амплитуд запаздывающей и мгновенной со­ставляющих определяется параметрами р-n -перехода.

Ñ Долговременные изменения параметров транзисторов обу­словлены эффектами смещения и ионизации.

 Эффекты смеще­ния, связанные с изменением кристаллической структуры полу­проводника вследствие перемещения атомов из своего положе­ния, вызывают изменение электрофизических свойств полупро­водника: времени жизни, подвижности носителей заряда и их концентрации. Соответственно изменяются и параметры транзи­сторов, определяемые указанными величинами.

Эффекты ионизации, связанные с накоплением заряда в ди­электрических слоях и изменением плотности поверхностных состояний при ионизации полупроводника, также приводят к де­градации параметров транзисторов.

Действие облучения на транзисторы удобно установить на основании его физических параметров, характеризующих про­цессы в транзисторной структуре.

Действие облучения на биполярные транзисторы.

Физические параметры биполярного транзистора можно разбить на четыре группы:

1)Параметры, характеризующие диффузию и дрейф неосновных носителей,

2)Параметры, характери­зующие рекомбинацию и генерацию,

3)Параметры, определяющие изменение пространственного заряда в области p-n-  переходов и его влияние на характеристики транзисторов (это зарядные емкости  коллекторного и эмиттерного переходов, а также емкость изолирующих p-n-переходов)

4)Параметры, характеризующие падение напряжения в объеме полупроводника и включающие объемные сопротивления эмиттера, базы и коллектора, а при высоких уровнях инжекции также диффузионное падение напряжения (ЭДС Дембера).

Ионизирующие излучения влияют на все физические параметры транзи­стора, однако перечень параметров, подлежащих учету, зависит от конкретных условий применения.

Действие облучения на униполярные транзисторы.

Влияние ионизирующего излу­чения на параметры униполярных транзисторов как с управляющим p-n-переходом, так и МДП - структур в основном проявля­ется в виде изменений тока затвора I3, порогового напряжения Uзи.пор (для МДП - транзисторов с индуцированным каналом) или напряжения отсечки Uзи.отс (для транзисторов с управляющим р-п-переходом и со встроенным каналом) и крутизны характеристики транзистора Sст. Претерпевают изменение также дифференциаль­ные параметры: сопротивление затвора rз, внутреннее сопротив­ление транзистора ri.

В отличие от биполярных транзисторов в униполярных тран­зисторах ток в канале образуется потоком основных носителей, поэтому заметные изменения характеристик униполярных тран­зисторов, обусловленные действием эффектов смещения, наблю­даются при уровнях облучения, способных существенно повли­ять на подвижность основных носителей и их концентрацию. Для кремниевых ИМС при облучении нейтронами это происходит при флюенсах, превышающих 1015-1016 нейтр./см2. Вместе с тем приповерхностный характер происходящих в МДП-транзисторах процессов обусловливает их сильную чувствительность к иони­зационным эффектам, действие которых, прежде всего, свя­зано с накоплением положительного пространственного заряда в слое подзатворного диэлектрика, модулирующего проводимость канала МДП-транзистора.

Специфика эффектов в зависимости от конструктивно-технологических особенностей ИМС.

Специфика проявления радиаци­онных эффектов во многом определяется конструктивно-технологическими особенностями ИМС и в некоторых случаях различается для схем низкой и высо­кой степени интеграции. В частности, для интегральных структур малой и средней степени интеграции, к числу которых относятся аналоговые ИМС, можно пренебречь неравновесностью энерго­выделения, более слабо проявляются дозовые эффекты в бипо­лярных структурах и т.п.

Уменьшение размеров структур в условиях радиационного воздействия также приводит к принципиальным изменениям физики работы приборов. Эти изменения связаны с тем, что: 1) характерные пространственные масштабы изменения электрического поля сопоставимы с длинами релаксации энергии и импульса электронов и длиной свободного пробега электронов; 2) характерные размеры рабочих областей приборов сравнимы с расстоянием между кластерами радиационных дефектов (КРД); 3) характерные размеры рабочих областей приборов сопоставимы с размерами КРД; 4) ионизирующее излучение разогревает электронный газ, который не успевает остывать за времена пролета рабочей области приборов; 5) при облучении нейтронами происходит перестройка протонированных изолирующих областей ИС, что сказывается на процессах протекания тока и фоточувствительности; 6) взаимодействие ионизирующих излучений (особенно лазерных) с нанометровыми металлическими объектами имеет особенности; 7) радиационные технологические процессы (например, геттерирование) существенно изменяют электрофизические характеристики полупроводника, что заметным образом сказывается на процессах формирования радиационных дефектов в субмикронных приборах; 8) электроны, разогнанные до энергий 0,5...1 эВ большими электрическими полями (~ 100 кВ/см) в субмикронных приборах, могут проникать сквозь КРД, что принципиально меняет подход к моделированию радиационной стойкости приборов.

Радиационные эффекты в усилительных и дифференциальных каскадах.

Усилительные каскады.

В качестве простейших усилитель­ных каскадов применяют каскады с общим эмиттером (ОЭ) и общим истоком (ОИ). Отклонение тока коллектора ΔIк от своей номинальной величины, обусловленное действие стационарных эффектов смещения и ионизации, можно уменьшить увеличением глубины обратной связи, что приводит к уменьшению как коэф­фициента нестабильности, так и чувствительности схемы.

Усилительные параметры каскада ОЭ: его коэффициент уси­ления по напряжению входное и выходное сопротивление изме­няются главным образом из-за уменьшения коэффициента пере­дачи тока базы bN. Высокочастотные параметры каскада ОЭ при облучении улучшаются из-за уменьшения b, tb и Ск.

В каскаде ОИ отклонение тока стока ΔIк от своей номиналь­ной величины, вызываемое радиационными эффектами, опреде­ляется изменением смещения на затворе, сдвигом напряжения отсечки и изменением статической крутизны характеристики.

Усилительные характеристики каскада ОИ изменяются из-за изменений крутизны характеристики транзистора S, его входного и выходного сопротивлений. Постоянные времени

tвх » СвхRг ;  tвsх » Сн.выхRсн

характеризующие высокочастотные свойства каскада ОИ, могут изменяться, если наблюдается заметное изменение паразитных емкостей Свх и Сн.вых которые складываются из межэлектродных емкостей транзистора, емкостей монтажных площадок и емкости нагрузки.

Дифференциальные каскады.

Принято считать, что стойкость аналоговых интегральных микросхем к спецвоздействиям оп­ределяется, прежде всего, радиационными эф­фектами во входных каскадах, в качестве кото­рых, как правило, применяют дифференциаль­ные каскады (за исключением трансимпедансных ИОУ). В дифференциальном каскаде приведенное ко входу откло­нение выходного напряжения от своей номинальной величины, вызываемое действием эффектов смещения и ионизации, опреде­ляется формулой

(где Kвл.ип коэффициент влияния нестабиль­ности напряжений источников питания, обусловленных радиаци­онными эффектами)

Представленное соотношение применимо для диффе­ренциальных каскадов, включенных в аналоговые ИМС с изоля­цией диэлектрической пленкой. В ИМС с изоляцией р-п-переходом в ряде случаев требуется учет паразитного р-п-р-транзистора, образуемого базовым и коллекторным слоями рабо­чего транзистора и подложкой ИМС.

Благодаря высокому коэффициенту по­давления синфазных сигналов, образуемых пере­падами ионизационных токов как на входах, так и на выходах, разность выходных напряжений и входной ток сдвига из­меняются незначительно. Поэтому отклонение выходного напряжения от нуля определяется не входным дифференциальным каскадом, а реакцией последующих каскадов.

Существенно меняется входной ток смещения; это ток, который определяется не разностью токов, а их средним значени­ем, изменение которого определяется изменением bN. Отклонение выходного напряжения происходит также из-за радиацион­ной нестабильности тока в эмиттерах.

В аналоговых ИМС с дифференциальным каскадом на входе в качестве пары используют униполярные транзисторы с управ­ляющим p-n-переходом. При этом токи затворов определяются токами обратносмещенных p-n-переходов — затворов. Как из­вестно, МДП-транзисторы обладают меньшим входным током, чем транзисторы с управляющим p-n-переходом. Однако МДП-транзисторы очень чувствительны к импульсным помехам, по­этому при использовании их во входных каскадах требуется за­щита входов диодами, токи утечки которых сводят на нет пре­имущества МДП-транзисторов. Необходимость диодной защиты отпадает в ИМС с внутрисхемной связью входа аналоговой части схемы с предшествующими схемами. При этом использование МДП-транзисторов в качестве дифференциальной пары позволя­ет заметно уменьшить Iвхсм и Iвх.сд определяемые токами утечки диэлектрических затворов.

Действие переходных ионизационных эффек­тов можно оценить при помощи моделей диффе­ренциальных каскадов на биполярных транзис­торах (рис. 1а) и униполярных транзисторах с уп­равляющим p-n-переходом (рис. 16).

Рис. 1. Модели дифференциальных каскадов для анализа переходных ионизационных эффектов: (а) - на биполярных транзисторах; (б) - на униполярных транзисторах с управляющим p-n-переходом.

В этих схемах фототоки источников стабилизированного тока I0 непосредственно не учитываются, так как их дей­ствие подавляется (так же как действие всяких синфазных помех). Косвенное влияние этих фо­тотоков, приводящее к изменению тока I0 в эмит­терах или истоках транзисторных пар, удобно учитывать наряду с другими причинами измене­ния этого тока, представив, что при облучении

ток I0 изменяется в (1 + aф) раз (где aф - коэффи­циент изменения тока I0).

В модели на рис.1,а действие фототоков, об­разуемых потоком носителей через коллектор­ные переходы, которые генерируются в базах транзисторных пар Т1 и Т2, учитываются посред­ством источников тока Iфкп1 и Iфкп2 (влиянием фо­тотоков, образуемых потоком носителей через эмиттерные переходы Т1 и Т2, пренебрегаем). Фототоки, которые возникают в коллекторных слоях транзисторов Tl, T2 и прилегающих к ним областях подложки с изолирующими р-п-переходами, учитываются источниками токов, шунтиру­ющих коллекторные и эмиттерные переходы па­разитных транзисторов ТП1, ТП2 и источниками фототоков Iфип1, Iфип2. Для упрощения моделей аналогичные паразитные транзисторы, связан­ные диффузионными резисторами, не показаны.

В модели на рис.1,б учтены фототоки, возни­кающие в каналах транзисторов Tl, T2 и прилегающих к каналам слоях подложки и изолирующих р-n-переходах. Действие ионизирующих излуче­ний приводит к отклонению от нуля выходного напряжения дифференциального каскада.

Влияние ионизационных эффектов, вызывае­мых воздействием электронного, высокоэнерге­тического нейтронного и g-излучений, проявля­ется прежде всего в виде заметного увеличения токов утечки и канальных токов, что приводит к росту входных токов смещения Iвх см и сдвига Iвх сд. Происходит также уменьшение коэффициента пе­редачи тока базы bN, влияющее как на точностные характеристики каскада, так и на его усилитель­ные параметры. Может происходить заметное из­менение выходных потенциалов каскада вследст­вие роста тока I0 стабилизированного источника.

Анализ влияния поверхностных ионизацион­ных эффектов требует более подробной инфор­мации о топологических и технологических осо­бенностях изготовления элемента ИМС, а также об изменениях заряда в приповерхностных слоях. Для этого обычно используют тестовые структуры.

Как показывает анализ, приведенное к входу импульсное отклонение собственного выходного напряжения дифференциального каскада (а не всего ИОУ) от номинальной величины оказыва­ются не столь заметными, несмотря на сущест­венное увеличение входных токов ИОУ при им­пульсном воздействии.

В литературе отмечается, что отклонение вы­ходного напряжения ИОУ от нуля при спецвоз­действии обусловлено не изменением выходных потенциалов дифференциальных каскадов, а в ос­новном происходит из-за нарушения режима по постоянному току выходных повторителей, при­чем это отклонение имеет одну и ту же поляр­ность, т.е. выходное напряжение отклоняется в сторону положительного источника питания. Экс­периментально было проверено, действительно ли влияние фототоков в выходных повторителях яв­ляется определяющим.

Влияние ИИ на шумовые характеристики дифф-каскада.

В каскадах на биполярных транзисторах в области средних и высших частот шумо­вого спектра, где преобладают дробовой шум токораспределения iш.к и тепловой шум объемного сопротивления базы eш.б, при облучении уровень шумов возрастает в результате деградации коэффициента пере­дачи тока базы b и увеличения объемных сопротивлений.

Влияние теплового шума сопро­тивления коллекторного слоя eшк, а также шумовых сигналов паразитного транзистора iшфи, iшfи не так существенно. В области низ­ших частот преобаладают шумы со спектром 1/f, а также низкочастотные шумы фототоков. Анализ низкочастотных шу­мов усложняется тем, что их изменение при облучении определяется не только объемными эффектами, но и поверхностными. Действие ионизирующих излучений приводит не тоолько к повышению уровня низкочастотных шумов, но также к увеличению граничной частоты fш, т.е. к сдвигу их спектральной плотности в область более высоких частот.

В дифференциальных каскадах на униполярных транзисторах в об­ласти средних и высших частот, где преобладают тепловой шум ка­нала iшс и дробовой шум тока затвора iш.з шумы при облучении воз­растают из-за уменьшения крутизны характеристики транзистора S и увеличения тока затвора вследствие роста тока генерации в управ­ляющем р-n-переходе. Возрастают также низкочастотные шумы, об­условленные флуктуациями заряда токов генерации—рекомбинации в обедненном слое изолирующего р-n-перехода. При этот относитель­ное увеличение шумового сопротивления практически не зависит от частоты.

Уровень собственных шумов каскада повышается из-за шумов фото­токов, особенно при высоких импедансах источника сигнала.

Уровень шумов дифференциального каскада зависит также от схе­мы подачи входного сигнала и съема выходного напряжения. На практи­ке нередко подают сигнал только на один из входов каскада По отношению к этому входу интенсивность первичного шумового на­пряжения возрастает.

Сравнение дифференциальных каскадов на биполярных и униполяр­ных транзисторах по их шумовым показателям в области средних час­тот показывает, что в первых из них при работе от источников с Rг >> 103 Ом уровень шума выше. Следует иметь в виду, что каскады на униполярных транзисторах менее критичны к выбору оптималь­ного сопротивления источника входного сигнала, а поэтому изме­нение условия оптимальности при облучении не приводит к дополни­тельному увеличению шума.

Страницы: 1, 2


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  бесплатно рефераты скачать              бесплатно рефераты скачать

Новости

бесплатно рефераты скачать

© 2010.