бесплатно рефераты скачать
  RSS    

Меню

Быстрый поиск

бесплатно рефераты скачать

бесплатно рефераты скачатьКурсовая работа: Когрентність другого порядку як об’єкт експериментального дослідження

Курсовая работа: Когрентність другого порядку як об’єкт експериментального дослідження

Зміст

Вступ

1. Когерентність, сутність когерентності 2-го порядку

2. Вимірювання когерентності

2.1 Дослід Юнга( 1-го порядку)

2.2 Дослід Брауна-Твіса

2.3 Лічба фотонів

3. Явища в квантовій оптиці, які базуються на когерентності 2-го порядку

Висновок

Список літератури


Вступ

До 1981 року рівняння для функції когерентності другого порядку вирішувалося лише в безабераційном наближенні. Чисельне вирішення даного рівняння з використанням методу кінцевих різниць пов'язане з великими труднощами. У загальному випадку дане рівняння має п'ять незалежних змінних. Недостатня ефективність даних алгоритмів дозволила вирішити лише завдання з осьовою симетрією і для пучків у вигляді безконечної смуги, для яких число незалежних

Широке поширення для дослідження завдання поширення частково когерентного випромінювання отримало вирішення рівняння перенесення випромінювання (УПІ) Фур'є - зв'язаного рівняння для функції когерентності. Вперше для завдання нелінійного поширення випромінювання в атмосфері дане рівняння було отримане в роботах. Воно також як і рівняння для функції когерентності має п'ять незалежних змінних і його точне чисельне рішення є проблематичним. Для його вирішення авторами використовувалося безабераційне наближення і метод фазового екрану. Точне чисельне вирішення даного рівняння було отримане лише для завдання з осьовою симетрією. У зв'язку з цим встала необхідність розробки асімптотики точних методів рішення задачі. Дослідження в цій області привели до появи ряду наближених асимптотичних методів вирішення УПІ, що зводять рівняння похідних в п'ятимірному просторі до системи звичайних диференціальних рівнянь.

Таким чином, для дослідження завдання поширення частково когерентного випромінювання в неоднорідних середовищах виникає необхідність створення методів і алгоритмів, що дозволяють виконати теоретичне моделювання поширення випадкового хвилевого поля при взаємному впливі ефектів, супроводжуючих поширення випромінювання: дифракцію, рефракцію на неоднорідному розподілі показника заломлення, рефракцію на неоднорідному розподілі коефіцієнта поглинання (посилення), неоднорідність поглинання (посилення) енергії випромінювання в поперечному перетині пучка, турбулентне розширення пучка.

Метою курсової роботи є дослідження характеристик частково когерентного лазерного випромінювання, що поширюється в регулярно і випадково неоднорідних (лінійних нелінійних) середовищах.

Для досягнення заданої мети передбачається вирішення наступних основних завдань:

- Дослідження теоретичних методів когерентності та когерентності другого порядку.

- Вживання даних методів і алгоритмів для дослідження поширення частково когерентного випромінювання.

- Дослідження залежності енергетичних і когерентних властивостей вихідного випромінювання, а також закономірностей поширення когерентного і частково когерентного лазерного випромінювання в неоднорідний поглинаючих (що підсилюють) середовищах від розподілів оптичних характеристик неоднорідного активного середовища.


1. Когерентність, сутність когерентності 2-го порядку

Когерентність (рос. когерентность, англ. coherence, нім. Kohärenz f) — це властивість хвилі зберігати свої частотні, поляризаційні й фазові характеристики.

Здатність до нтерференції, яку виявляють за певних умов хвилі, зокрема світлові. Умовою когерентност хвиль є незмінюваність у часі різниці між фазами коливань у них, що можливо лише тоді, коли хвилі мають однакову довжину (частоту).

Завдяки когерентності хвиль виникають інтерференційні явища.

Поняття плоско монохроматичної хвилі, яке часто використовується в фізиці є абстракцією. Реальні хвилі, які випромінюються реальними джерелами, насправді є скінченими хвильовими пакетами. Кожне джерело випромінює свої особливі хвилі, як розрізняються настільки ж, наскільки різняться відбитки пальців людей. Однак, для спостереження інтерференції необхідно, щоб хвиля зберігала самоподібність. Така самоподібність хвилі описується терміном когерентність.

Наприклад, для отримання двох когерентних між собою променів у оптиці використовують розділення початкового променя світла. Один із способів зробити це - поставити на шляху променя плоскопаралельну пластинку. Частина світла буде відбиватися від пластинки, а частина проходити далі. Використовуючи лінзи та дзеркала можна спрямувати розділені промені так, щоб вони знову перетиналися, подолавши різний шлях. Тоді, внаслідок різниці ходу променів, виникає інтерференційна картина.

Термін когерентність використовується також для хвильових функцій у квантовій механіці.[2]

Під когерентністю розуміють узгоджене протікання в часі і в просторі декількох хвильових процесів, що проявляються при їх додаванні. Для когерентних світлових хвиль з постійною або зміною по певному закону різницею фаз виникає характерна нтерференційна картина. Якщо порівнювати фази однієї і тієї ж світлової хвил в різні моменти часу які розділяються інтервалом τ то при достатньо великому значенню τ випадкове змінення фаз може перевищити π. Це означає, що через деякий час хвиля "втрачає свою пам`ять", тобто забуває значення початкової фази. Тобто вона стає не когерентною сама до себе. Для кількісної характеристики цього явища вводять функцію R(τ), яка ма назву функція кореляції. В цьому випадку додавання двох хвиль, які затриман одна відносно одної і отримані від одного джерела через час τ можна представити у виразом:

Ер=clip_image002

Де Е1 та Е2 амплітуди хвиль; ω – середня частота коливання

Значення τ при якому функція кореляції R(τ)=0,5 називається часом когерентності, а відстань, яка визначається lког=сτ називається довжиною когерентності. У випадку, коли τclip_image004відповіда повній часовій когерентності.

КОГЕРЕНТНІСТЬ погоджене протікання в просторі і в часі декількох коливальних або хвилевих процесів, при якому різниця їх фаз залишається постійною. Це означає, що хвил (звук, світло, хвилі на поверхні води і ін.) поширюються синхронно, відстаючи одна від одної на сповна певну величину. При складанні когерентних коливань виникає інтерференція; амплітуду сумарних коливань визначає різниця фаз.

Гармонійн коливання описує вираження

A(t)= A0cos(wt + j)

де A0 – початкова амплітуда вагання, A(t) – амплітуда у момент часу t, w – частота вагання, j його фаза.

Коливання когерентні, якщо їх фази j1, j2 ... міняються безладно, але їх різниця Dj = j1 j2 ... залишається постійною. Якщо ж різниця фаз міняється, коливання залишаються когерентними, поки вона по величині не стане порівнянна з р.

Поширюючись від джерела коливань, хвиля через якийсь час t може "забути" первинне значення своєї фази і стати некогерентною самій собі. Зміна фази зазвичай відбувається поступово, і час t0, протягом якого величина Dj залишається менше p, називається тимчасовою когерентністю. Її величина безпосередньо пов'язана з надійністю джерела коливань: чим стабільніше він працює, тим більше тимчасова когерентність вагання.

За час t0 хвиля, рухаючись з швидкістю з, проходить відстань l = t0c, яке називається довжиною когерентності, або довжиною цугу, тобто відрізання хвилі, що має незмінну фазу. У реальній плоскій хвилі фаза коливань міняється не лише уздовж напряму поширення хвилі, але і в площині, перпендикулярній йому. В цьому випадку говорять про просторову когерентність хвилі.

Перше визначення когерентності дав Томас Юнг в 1801 при описі законів інтерференції світла, що проходить через дві щілини: "інтерферують дві частини одного і того ж світу". Суть цього визначення полягає в наступному.

Звичайні джерела оптичного випромінювання складаються з безлічі атомів, іонів або молекул, що мимоволі випускають фотони. Кожен акт випускання триває 10–5 – 10–8 секунд; слідують вони безладно і з випадково розподіленими фазами як в просторі, так в часі. Таке випромінювання некогерентне, на освітленому їм екран спостерігається усереднена сума всіх коливань, а картина інтерференц відсутня. Тому для здобуття інтерференції від звичайного джерела світла його промінь роздвоюють за допомогою пари щілин, біпризми або дзеркал, поставлених під невеликим кутом одне до іншого, а потім зводять разом обоє частини. Фактично тут йдеться про узгодженості, когерентності двох променів одного акту випромінювання, що відбувається випадковим чином. Когерентність лазерного випромінювання має іншу природу. Атоми (іони, молекули) активної речовини лазера випускають вимушене випромінювання, викликане прольотом стороннього фотона, "в такт", з однаковими фазами, рівними фазі випромінювача.

У найбільш широкому трактуванні під когерентністю сьогодні розуміють спільне протікання два або декількох випадкових процесів в квантовій механіці, акустиці, радіофізиц н.

Поняття когерентності тісно пов’язують з іншим фундаментальним явищем випромінювання — інтерференцією додаванням хвильових полів із взаємним підсиленням або із взаємним послабленням в залежності від координат простору і часу. Якщо обидва джерела мають однакову яскравість, то наявність чітких інтерференційних смуг можливо вважати ознакою доброї когерентності, тоді як відсутність смуг відповіда повній некогерентності. Якість когерентності оцінюється по експерименту нтерференційної картини. В цьому визначенні якісна сторона ясна і зрозуміла, але при оцінці кількісних характеристик виникають певні труднощі. Амплітуду и фазу по інтерференційній картині безпосередньо визначити неможна. Будь який приймач випромінювання дає відклик тільки на інтенсивність — сумарну або середню в заданому об'ємі простору. Тому вимірною характеристикою когерентност за період часу спостереження Т є її інтенсивність: clip_image006

Схема класичного експерименту Юнга для спостереження інтерференційної картини

clip_image008


А-джерело; Р1.2-положення діафрагми діаметром О1,2; q 1,2 -положення точки на екрані або clip_image010, деclip_image012— квадрат модуля напруженості електричного поля; clip_image014— комплексно спряжена величина вектора clip_image016— діелектрична проникність.

Припустимо, два пучка випромінювання, виходячи з вказаних вище щілин, перетинаються в заданому обємі простору. Тоді, враховуючи принцип суперпозиції, результуюче поле clip_image018рівне сумі хвильових полів в кожному з пучків

clip_image020

де clip_image022и clip_image024вектори напруженості електричного поля, які залежать від координат и часу.

Так як поле функція просторових координат и часу, прийнято розрізняти просторову і часову когерентність. Ці аспекти одного фізичного явища можна сформулювати наступним чином. Просторова когерентність в заданий момент часу пов’язана з кореляцією між фазами хвиль електромагнітного поля в різних точках простору.

Часова когерентність характеризу кореляцію між фазами електромагнітного поля в заданій точці простору в різн моменти часу.

Коли хвиля проходить через середовище, її когерентність поступово втрачається завдяки процесам розсіювання. Відстань, на якій когерентність зберігається, називають довжиною когерентності.

Кореляційна функція другого порядку відображає кореляцію між амплітудами світлового пучка в двох просторово-часових крапках. Когерентність другого порядку наочно просліджується в досвіді Юнга. Зв'язок теоретичного опису когерентності другого порядку з даними інтерференційних вимірів дає комплексна міра когерентності, нормована величина [1.1]

, (1.1)

де  - кореляційні функц другого порядку,  - взаємна функція когерентності. Вимірюючи повну інтенсивність і інтенсивність окремих пучків світла, що пройшли через кожен отвір, можна визначити функцію . Мірою контрастност нтерференційної картини служить видимість в точці P

, (1.2)

де Іmax, Іmin максимальна і мінімальна інтенсивності в безпосередній околиці точки P. [4]

Для однакових по інтенсивності пучків світла в досвіді Юнга модуль комплексної міри когерентності дорівнює видимості інтерференційної картини, яку можна знайти експериментально. Для опису кореляції випромінювання з самим собою, тобто в одній і тій же точці простору, але в тих, що відрізняються на моменти часу, використовують поняття тимчасової когерентності. Атоми випромінюють з невизначеністю у величині частоти, і оптичне випромінювання складається з наборів цугів хвиль, затухаючих тим швидше, чим коротше P. За проміжок часу усереднювання інерційного фотодетектора коливання, що існували в початковий момент, поступаються місцем коливанням нового цугу хвиль з тією ж частотою, але з випадково зміненою фазою. Тому когерентність випромінювання з самим собою снує для затримки в часі, що не перевищує P. Стосовно двох оптичних коливань час когерентності означає, що їх різниця фаз не встигає змінитися на величину, порівнянну з 180 0, за проміжок часу P.

Міра тимчасово когерентності може бути виміряна за допомогою інтерферометра Майкельсона. Вимір міри просторової когерентності випромінювання при проходженні через кров проводився на експериментальній установці з використанням інтерференційно схеми Юнга. Випромінювання неонового для гелію лазера розширюється і колімірується за допомогою двох лінз Л1 і Л2, після чого прямує на екран Е. Отверстія О1 і О2 в екрані стають джерелами вторинних хвиль, які лінза Л3 зводить у фокальну площину, де розташована щілинна діафрагма Д.


2. Вимірювання когерентності

2.1 Дослід Юнга( 1-го порядку)

У досліді Юнга забезпечується когерентність (постійність різниці фаз коливань) двох джерел світла - паралельних щілин. Природно, при некогерентних джерелах нтерференційна картина спостерігатися не може. Але для успішност спостереження інтерференційної картини виявляється важливою і тимчасова когерентність. При цьому виявляється зручнішим говорити про довжину когерентності. Вона визначається як характерний час, протягом якого фаза коливань хвилі залишається постійною, помножений на швидкість світла у вакуумі.

Дійсно, при видаленні від центру екрану збільшується різниця ходу променів від джерел S S". І якщо різниця ходу більше довжини когерентності, то ми знову-таки не зможемо спостерігати інтерференційну картину.

Зробимо таке (досить очевидне) твердження: "чисто" синусоїдальних хвиль в природ не буває. Щонайближче до такій хвилі випромінювання лазера, але і для нього довжина когерентності кінцева, хоча і вельми велика. Але будь-яка реальна хвиля сумою більше або менше синусоїдальних хвиль, що відрізняються по частоті.

Інтенсивність випромінювання, таким чином, деяким чином розподілена по осі частот (або довжин хвиль). В зв'язку з цим говорять про ширину спектральної смуги, і в питанні про те, як зв'язана довжина когерентності з різницею довжин хвиль нам знов допоможе розгляд биття.

Передбачимо, що хвиля світла при спостереженні інтерференції в досвіді Юнга є сумою двох синусоїдальних хвиль. Як ми знаємо, амплітуда сумарних коливань змінюється згідно із законом


  .

Отже, зміна фази відбувається через час яке визначається умовою

;

і довжина когерентності

.

З іншого боку ми маємо:

.

По сенсу довжина когерентності - величина позитивна. Беручи тому відповідні величини по модулю, маємо:

.

Підійдемо тепер до цього питання з іншого боку. Передбачимо, ми проводимо досвід Юнга з такою хвилею - сумою хвиль з близькими частотами. Для x різні:(них відстані між мінімумами

.


 На таку величину інтерференційний максимум однієї довжини хвилі зрушений по відношенню до максимуму інший. Якщо узяти досить велике x і якщо він виявиться рівним(кількість максимумів n, то зрушення дорівнює n половині (середньою для цих хвиль) ширини інтерференційного максимуму, картинка "змаститься". Відмітивши, що для максимуму з номером n різниця ходу променів рівна, ми отримаємо:(n

;

Таким чином, довжина когерентності виявляється величиною порядку різниці ходу, при якій нтерференційна картина вже не спостерігається.

При спостереженн нтерференційної картини виникають деякі не цілком очевидні труднощі. Уявимо собі, що як джерела циліндрових хвиль ми спробували використовувати нитки двох електричних лампочок. Випромінювання розжарених ниток здійснюється прискореним рухом електронів в нитках, ніяк один з одним не зв'язаних. Такі хвилі, природно, не матимуть однакових початкових фаз, які при записі відповідних виразів ми просто вважали нульовими. І ці початкові фази не лише різні в даних двох хвиль, але і непостійні в часі, змінюються випадковим чином. Такі хвил називають некогерентними.

В принципі нам не обов'язково потрібно, аби початкові фази коливань від двох джерел були рівні. Нам треба, аби постійною в часі була різниця фаз цих коливань. Якщо ця вимога виконується, то хвилі (або джерела) називають когерентними. Це визначення когерентност хвиль (джерел хвиль).

Таким чином, виникає проблема: як добитися того, аби джерела були когерентними?

Уявимо собі, що джерелом (приблизно) циліндрових хвиль є вертикально розташована розжарена смужка металу. Зрозуміло, що вона випромінюватиме світло по різних напрямах як у вертикальній, так і в горизонтальній площинах.

Ми зв'язали напрям випромінювання з похідної фази коливань по координаті. З величезного числа електронів, що коливаються, знайдуться і такі, які в даний момент вагаються з (приблизно) однаковою фазою. Їх випромінювання буде направлено по нормалі до смужки. Але знайдуться і електрони, які вагаються так, що для них похідна фази по напряму уздовж деякої прямої, "намальовано" на поверхні смужки, має відмінне від нуля значення. Їх випромінювання буде направлено під деяким кутом до випромінюючої поверхні.

Але хай якась група електронів випромінює хвилю приблизно по нормалі і вона потрапляє потім на екран. Проте, в наступний проміжок часу це будуть вже інші електрони, початкова фаза падаючої на екран хвилі буде іншою. Але, зрозуміло, протягом деякого часу вона все ж матиме якесь значення, буде (приблизно) постійною. Така постійність фази визначає тимчасову (з наголосом на ‘у’) когерентність.

Страницы: 1, 2


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  бесплатно рефераты скачать              бесплатно рефераты скачать

Новости

бесплатно рефераты скачать

© 2010.