бесплатно рефераты скачать
  RSS    

Меню

Быстрый поиск

бесплатно рефераты скачать

бесплатно рефераты скачатьКурсовая работа: Рентгенофлуоресцентное определение редких элементов Sr, Rb, Nb в литий-фтористых редкометальных гранитах

Курсовая работа: Рентгенофлуоресцентное определение редких элементов Sr, Rb, Nb в литий-фтористых редкометальных гранитах

Санкт-Петербургский государственный университет

Химический факультет

Кафедра аналитической химии

Курсовая работа

Рентгенофлуоресцентное определение редких элементов Sr, Rb, Nb в литий-фтористых редкометальных гранитах

Выполнила: студентка IV курса Е.В. Бутаева

Руководитель: доцент А.В. Бахтиаров

Санкт-Петербург 2009


Оглавление

Введение

1. Литературный обзор

1.1 Методы определения рубидия, стронция и ниобия

1.1.1 Определение стронция

1.1.2 Определение Рубидия

1.1.3 Определение Ниобия

Выводы

1.2 Основы рентгенофлуоресцентного анализа

1.2.1 Матричные эффекты

1.2.2 Способ стандарта-фона

1.3 Рентгенофлуоресцентное определение редких элементов Sr, Rb, Nb

1.4 Применение Sr, Rb, Nb

2. Экспериментальная часть

2.1 Пробоподготовка

2.2 Аппаратура

2.3 Результаты РФА анализа

Заключение

Литература


Введение

Научный и практический интерес к литий-фтористым редкометальным гранитам обусловлен уникальностью их химического и минерального состава, а также экстремальными (вплоть до рудных) концентрациями редких и рассеянных элементов. Среди нерешенных вопросов происхождения редкометальных гранитов главным остается причина возникновения таких магм, обогащенных летучими и редкими элементами либо в ходе длительной дифференциации обычных гранитных расплавов, либо изначально в процессе плавления протолита. Решение этого важного вопроса требует определения состава пегматитов, и, прежде всего, содержаний редких и рассеянных элементов, по которым возможна дифференциация пегматитов и других интрузивных пород.

Целью настоящей работы является определение возможностей одного из современных методов анализа РФА (с использованием способа стандарта-фона, на спектрометре ARL ADVANT’X) для одновременного определения таких элементов как Sr, Nb, Rb в литий-фтористых редкометальных гранитах со сложными матрицами.


1. Литературный обзор

1.1 Методы определения рубидия, стронция и ниобия

В данной главе будет представлен ряд методов используемых при анализе Sr, Rb, Nb, которые будут рассмотрены с точки зрения следующих характеристик:

Чувствительность

Селективность

Предел обнаружения

Экспрессность

Воспроизводимость полученных результатов

Возможность частичной или полной автоматизации

Стоимость оборудования и реагентов

1.1.1 Определение стронция

Спектрофотометрические методы определения

Данные методы можно разделить на прямые и косвенные.

Прямые методы основаны на реакциях образования окрашенных соединений при действии реактивов на ионы стронция. В косвенных методах стронций осаждается в виде труднорастворимого соединения с окрашенным реактивом, присутствующим в избытке, осадок отделяют и по количеству несвязанного реактива определяют концентрацию стронция в пробе.

Примеры прямых методов определения:

Определение стронция нитроортаниловым С (нитрохромазо) или ортаниловым С Мешают определению барий, свинец (2), давая с реагентом цветную реакцию; цирконий, титан, талий и некоторые другие элементы приводят к резкому занижению результатов. Чувствительность ≤0,05 мкг/мл.

Определение стронция с диметилсульфаназо III и диметилсульфаназо

Элементы III-VI их групп должны быть удалены. Количество аммонийных солей и щелочных металлов должно быть не более 10 мг. Сульфаты и фосфаты мешают, если их больше 0,03 ммоля. Определению мешают многие металлы, в том числе Са и Mg, если их содержание в пробе ≥ 0,3 мкмоля, а Cu (II) ≥0,25 мкмоля. Также много и других ограничений.

Определение стронция с карбоксинитразо. Реакция стронция с карбоксинитразо является одной из наиболее чувствительных. С помощью этой реакции определяют 0,08-0,6 мкг/мл.

Косвенные методы определения стронция

Ввиду свое малой селективности косвенные методы не находят применение в настоящее время, поэтому будут лишь упомянуты:

8-Оксихинолиновый метод

Метод с использованием пикролоновой кислоты

Определение стронция с помощью хромата

b) Электрохимические методы:

Полярографический метод

Определению стронция мешают ионы бария (но это можно устранить подбором подходящего фона которым является (C2H5) 4NBr в абсолютном этаноле). В присутствии приблизительно равных концентраций Mg и Ca определение Sr невозможно. Следует предварительно отделять Ba, Ca, Na, K если их концентрации существенно превосходят концентрацию Sr.

Дифференциальный полярографический метод

Даёт возможность определять малые количества стронция в присутствии больших количеств Na и К. Чувствительность - 0,0001 моль Sr /моль соли.

Инверсионная полярография.

Позволяет определить стронций в очень малых концентрациях (10-5 - 10-9 М), если его сначала сконцентрировать в капле ртути путём электролиза, а затем подвергнуть её анодному растворению. Используется осциллографическая техника. Средняя ошибка составляет 3-5%.

Кондуктометрический метод.

Определения ведётся после предварительного отделения группы элементов Li, K, Na, Ca и Ba, входящих в растворимые соли строительных материалов.

c) Спектральные методы:

Спектрографический (искровой и дуговой) метод.

Наиболее интенсивные линии Sr лежат в видимой области спектра: 4607,33; 4077,71 и 4215,52 Ǻ, причём 2 последние находятся в области циановых полос. Поэтому при использовании для анализа дуги с угольными электродами эти линии менее пригодны. Линия 4607,33 Ǻ отличается сильным самопоглощением, поэтому рекомендуется использовать её при определении лишь малых концентраций Sr (ниже 0,1%). При высоких его содержаниях используются линии Sr 4811,88 и 4832,08 Ǻ, а также 3464,46 Ǻ. В ультрафиолетовой области спектра используются значительно более слабые линии 3464,46 и 3380,71 Ǻ, последняя из них расположена в области спектра, обладающего фоном. Для стабилизации температуры горения дуги, устранения влияния Са, Mg, Na и достижения более высокой точности определения Sr используют буферные смеси. Для устранения полос циана определение Sr проводят в аргоне либо переводят пробы во фтористые соединения. Чувствительность определения Sr в дуге составляет 5*10-5 - 1*10-4%, относительная ошибка определения ±4-15%.

Применение импульсного дугового разряда большой силы тока в аргоне позволяет значительно повысить чувствительность определения Sr (3*10-12 г).

Чувствительность определения Sr в искре составляет (1-5) *10-4%. Ошибка определения ±4-6%. C целью повышения точности и абсолютной чувствительности анализа, а также устранения влияния мешающих линий посторонних элементов, предложено использовать интерферометр, скрещенный со спектографом.

Эмиссионная фотометрия пламени.

Благодаря своей простоте и надёжности пламеннофотометрический метод определения стронция находит широкое применение, особенно при анализе горных пород и минералов, природных и сточных вод, биологических и других материалов. Он пригоден для определения как малых, так и больших содержаний элемента с достаточно высокой точностью (1-2 отн.%) и чувствительностью, причём в большинстве случаев определение стронция может быть выполнено без отделения от других элементов.

Наиболее высокая чувствительность достигается при использовании аппаратуры с автоматической записью спектра и высокотемпературных пламён. Самая высокая чувствительность достигается при использовании ВЧ-плазмы 0,00002 мкг Sr/мл.

При импульсном методе испарения абсолютный предел обнаружения Sr составляет 1*10-13-2*10-12 г (пламя смеси ацетилен-закись азота). При достаточно больших количествах пробы (~10 мг) относительный предел определяемого содержания стронция снижается до 1*10-7%, в то время как при введении раствора пробы в пламя с помощью распылителя он равен 3*10-5%.

Атомно-абсорбционная спектрофотометрия.

Определение Sr производится путём измерения поглощения света его атомами. Наиболее часто используются линия стронция 460,7 нм, с меньшей чувствительностью стронций может быть определён по линиям 242,8; 256,9; 293,2; 689,3 нм. При использовании высокотемпературных пламён стронций можно определять также по ионной линии 407,8 (ионно-абсорбционная спектроскопия).

Различают два вида помех в данном методе анализа. Первый вид помех связан с образованием труднолетучих соединений и проявляется в пламени смеси ацетилена с воздухом. Наиболее часто отмечается влияние катионов Al, Ti, Zr, и других анионов PO4 и SiO3.

Другой вид помех - вследствие ионизации атомов стронция, например за счёт влияния Са и Ba, увеличения атомного поглощения от присутствия Na и К и др.

Чувствительность обнаружения стронция 1*10-4-4*10-12 г.

d) Активационный метод.

Наибольшее распространение нашёл метод определения по активности 87m Sr. В большинстве случаев определение производится по измерению активности после радиохимического выделения Sr, которое проводится с использованием методов осаждения, экстракции и ионного обмена.

Применение γ-спектрометра с высоким разрешением позволяет повысить точность метода и сократить число операций по отделению, так как возможно определение Sr в присутствии ряда посторонних элементов. Чувствительность обнаружения стронция около 6*10-5 г/г.

e) Масс-спектрометрический метод.

Масс-спектроскопия используется для определения изотопного состава стронция, знание которого необходимо при вычислении геологического возраста образцов по рубидиево-стронциевому методу и при определении микроколичеств стронция в различных объектах методом изотопного разбавления. Предельная абсолютная чувствительность определения Sr масс-спектральным методом вакуумной искры составляет 9*10-11.

1.1.2 Определение Рубидия

a) Спектрофотометрические методы определения

Фотометрическое определение рубидия основано на образовании им окрашенных соединений (преимущественно малорастворимых) и измерении оптической плотности полученного затем раствора. В настоящее время не найдены избирательно действующие реагенты, образующие с рубидием комплексные соединения, обладающие устойчивостью, необходимой для фотометрического определения. Поэтому многочисленные фотометрические методы определения рубидия не имеют большого практического значения.

b) Электрохимические методы:

Также как и фотометрические, не относятся к категории селективных методов определения рубидия. Электрохимическому анализу обязательно должно предшествовать разделение элементов.

Несмотря на большое разнообразие электрохимических методов, определение рубидия производят преимущественно методами полярографии и электрохимических индикаторов (потенциометрическое и кондуктометрическое титрование).

Чувствительность и ошибки метода: Обычным полярографическим методом с использованием ртутно капающего электрода можно определять рубидий уже при содержании его в растворе 7*10-5-1*10-3 г-ион/л. Чувствительность метода амальгамной полярографии с накоплением составляет 8*10-6-5*10-5 г-ион/л.

Потенциометрическое титрование.

При потенциометрическом определении рубидия применяют обычные приёмы титриметрического анализа; переводят ионы Rb+ в осадок, который затем растворяют и из полученного раствора осаждают нитратом серебра либо галогенид-ионы, либо другие анионы, входящие в состав первоначального осадка. Такая последовательность операций была вызвана отсутствиемион-селективных электродов. Индикаторным электродом для реакций с участием Ag+-ионов является серебряный электрод, подготовленный к измерениям по способу Кларка. Относительные ошибки при определении рубидия составляют ±1,0%.

Кондуктометрическое и высокочастотное титрование

Главное преимущество высокочастотного титрования - отсутствие электродов в анализируемом растворе. Определение рубидия высокочастотным титрованием тетрафенилборатом натрия требует тщательной предварительной очистки анализируемого раствора от целого ряда примесей.

c) Спектральные методы:

Данные методы определения рубидия входят в группу физических методов анализа, характеризующихся высокой чувствительностью и избирательностью по отношению к рубидию. Среди этих методов наибольшее развитие получила пламенная фотометрия, которая стала одним из основных методов в аналитической химии рубидия.

Оптический эмиссионный анализ.

Данный вид анализа позволяет в используемой области спектра (400-900 нм) определять почти без предварительной химической обработки пробы одновременно с рубидием значительное число и других элементов. В зависимости от условий проведения анализа (вид пробы, источник возбуждения) различают собственно эмиссионный анализ и пламенную фотометрию. Первый из перечисленных практически не используется, однако продолжает оставаться надёжным и простым средством обнаружения и определения рубидия.

Эмиссионный анализ.

Рубидий имеет простые и легко возбудимые спектры атомов. Самые интенсивные линии рубидия находятся в инфракрасной области спектра (они максимально свободны от наложения линий других элементов).

В настоящее время непосредственное количественное определение рубидия в породах и минералах возможно с чувствительностью до 3*10-4%. Если применять низкотемпературную дугу постоянного тока и использовать линии рубидия, лежащие в инфракрасной области спектра, то удаётся довести чувствительность определения до 1*10-4%, при средней квадратичной ошибке ±4-12%. Чувствительность определения рубидия методом медной искры составляет 2*10-8 гр.

Пламенная фотометрия.

Этот метод обеспечивает надёжное определение рубидия в пределах 10-4% (навеска 5 г, точность ±20%), обладает большой простотой, достаточной экспрессностью и воспроизводимостью. Используя угольный микрозонд, вводимый в воздушно-ацетиленовое пламя, можно увеличить абсолютный предел чувствительности до 5*10-13 гр (Rb 780,0 нм). При этом анализируемая проба раствора наносится из микропипетки на кончик микрозонда. Такая чувствительность позволяет определять до 1*10-6 - 1*10-7% Rb в пробе массой 10 г.

Атомно-абсорбционная спектроскопия.

Данный метод уступает по своей простоте предыдущему. К числу достоинств атомно-абсорбционного метода следует прежде всего отнести отсутствие взаимного наложения резонансных линий калия, рубидия, а также наложения на спектральные линии рубидия молекулярных спектров излучения оксидов железа и щелочноземельных элементов; чрезвычайно малый фон, менее жёсткие требования к юстировке выходных щелей спектрометров, качеству приёмников излучения и т.д. Кроме того, в атомно-абсорбционном методе с увеличением толщины поглощающего слоя (ширины пламени) возрастает чувствительность определения.

В среднем чувствительность определения рубидия атомно-абсорбционным метода в различных солях калия (KCl, K2CO3, KI, K2SО4, KNO3) составляет 2*10-4% при относительной ошибке ±5%. В отдельных случаях применяя специальную технику (повышения чувствительности гальванометров и потенциометров, увеличение длины пламени и т.д.), можно чувствительность определения рубидия довести до 0,01-0,025 мкг/мл.

d) Радиоактивационный метод.

По своей чувствительности нейтронно-активационный анализ сопоставим только с пламенной фотометрией, а при облучении анализируемого образца нейтронным потоком превышающим 1012 нейтрон/см2*сек, чувствительность рассматриваемого метода может значительно превышать чувствительность метода пламенной фотометрии. К сожалению, нейтронно-активационный анализ связан с длительными трудоёмкими операциями (в лучшем случае общее время анализа, включая облучение образца, последующее химическое разделение и измерение излучения составляет 20-21 час), требует наличия источника мощного потока нейтронов и специально оборудованных помещений, что естественно, ограничивает возможность более широкого применения этого вида анализа для определения рубидия.

Чувствительность определения при потоке 1*10 (14) Нейтрон/сек*см2, 24 часа − 1,3*10-9, а при потоке 1,8*10 (12) нейтрон/см2*сек, 1 час составляет 5*10-8 гр.

e) Масс-спектрометрический метод.

Масс-спектрометрическое определение рубидия производят почти исключительно в варианте изотопного разбавления. Искровую масс-спектроскопию в аналитической химии рубидия почти не применяют. Её использованию, несмотря на большую чувствительность (до 1*10 (-9) г), препятствует высокая стоимость аппаратуры и её эксплуатации, недостаточная воспроизводимость.

1.1.3 Определение Ниобия

a) Спектральные методы.

Обеспечивают возможность непосредственного определения до тысячных долей процента ниобия.

Эталоны, применяемые для прямого определения ниобия, готовят на основе смеси пустой породы, которая по составу приближается к анализируемой руде, но не содержит ниобий и "вспомогательной смеси" (угольный порошок, рассчитанные количества пятиокисей ниобия и 0,75% трёхокиси молибдена в качестве внутреннего стандарта).


b) Полярографические методы анализа

Данный метод анализа использован для определения ниобия в ниобатах, в титановых рудах и пигментах, в карбонатитных рудах и в продуктах их обогащения. Ниобий определяют в присутствии других элементов после выделения суммы окислов методом осаждения или экстракции.

Полярографическая волна при - 0,395 в пропорциональна концентрации ниобия. В качестве стабилизатора диффузионного тока прибавляют этиленгликоль. Ошибка определения ниобия в присутствии других элементов, встречающихся в колумбитах и танталитах, составляет - 0,74% ÷ +0,5%.

c) Радиохимические методы.

При определении ниобия чаще всего используют метод изотопного разбавления с предварительным выделением ниобия. Метод обладает высокой чувствительностью и точностью, которая зависит от выбора оптимального соотношения элемента и индикатора-разбавителя.

Выводы

Таким образом можно сделать выводы о том, что многие методы способны конкурировать с рентгенофлуорисцентным анализом, и даже превосходят его по чувствительности, но на ряду с этим имеют некоторые недостатки. Например: необходимость предварительное отделение, осаждение определяемого элемента, мешающее влияние посторонних элементов, существенное влияние матричного состава, наложение спектральных линий, длительные пробоподготовка плохая воспроизводимость результатов, высокая стоимость аппаратуры и её эксплуатации.


1.2 Основы рентгенофлуоресцентного анализа

Рентгенофлуоресцентный анализ (РФА) относят к категории элементных анализов. Диапазон определяемых элементов и границы их обнаружения в РФА зависят от используемой аппаратуры. В общем случае, в область определяемых входят элементы от Be до U включительно. Граница обнаружения зависит от атомного номера элемента, например, для фосфора граница обнаружения составляет 0.01%, для элементов начала V периода оценивается в 0.0002%. Метод характеризуют высокая экспрессность и относительно простая пробоподготовка, нет ограничений по физическим свойствам и химическому составу объекта исследования. Известны методики РФА твердых и жидких образцов, дисперсных и монолитных, образцов растительного, животного и минерального происхождения. Метод отличает недеструктивность, т.е. в процессе анализа с образцом не происходит никаких химических изменений. Пороговую чувствительность во многих случаях ограничивает фон, который создают рассеянные рентгеновские лучи. Особенностью рентгенофлуоресцентного метода, выгодно отличающей его от других физических методов анализа, является его высокая помехоустойчивость.

Страницы: 1, 2, 3


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  бесплатно рефераты скачать              бесплатно рефераты скачать

Новости

бесплатно рефераты скачать

© 2010.