бесплатно рефераты скачать
  RSS    

Меню

Быстрый поиск

бесплатно рефераты скачать

бесплатно рефераты скачатьСтатья: Аксиоматическое построение основных уравнений теории реального электромагнитного поля

Статья: Аксиоматическое построение основных уравнений теории реального электромагнитного поля

В.В. Сидоренков, МГТУ им. Н.Э. Баумана

В концепции корпускулярно-полевого дуализма электромагнитных характеристик материи сформулированы физико-математические принципы аксиоматического построения уравнений реального электромагнитного поля, физическое содержание которых представляет собой концептуально новый уровень в развитии основ полевой теории классического электромагнетизма.

Известно [1], что в электромагнетизме базовой физической характеристикой материального тела является его электрический заряд, представление о котором на микроуровне имеет принципиальное дополнение: элементарная частица характеризуется не только зарядом q, кратным заряду электрона |e-|, но и спином s, трактуемым как собственный момент количества движения частицы, величина которого квантована значением h/2, где h - постоянная Планка. Таким образом, локальными (корпускулярными) электромагнитными характеристиками микрочастицы являются электрический заряд, определяющий ее электрические свойства и собственный момент, ответственный за ее магнитные свойства, поскольку истинный магнетизм имеет спиновую природу.

С другой стороны, обратим внимание на основополагающую аксиому философии: «пространство и время есть формы существования материи», означающую невозможность в принципе существования материи вне пространства и времени, соответственно, реализации пространства и времени без материи. Иными словами, характеристики материи и пространства-времени едины и взаимно обусловлены. По нашему мнению, аксиома концептуально обосновывает реальность корпускулярно-полевого дуализма материи, который, казалось бы, отличен только лишь по названию от «корпускулярно-волнового дуализма» частиц микромира в квантовой механике. Формально и здесь и там имеем неразрывную взаимосвязь материи с ее пространственно-временным собственным полем. Однако сущностные различия принципиальны: представления корпускулярно-полевого дуализма основаны на объективном единстве частицы материи и ее поля в реальном пространстве физического вакуума, а в концепции корпускулярно-волнового дуализма материальная частица представляется волной вероятности в абсолютно пустом, абстрактном пространстве.

На базе этой логики приходим к выводу, что и электромагнитные характеристики микрообъектов должны обладать «корпускулярно-полевым дуализмом», благодаря которому указанным выше локальным параметрам частицы соответствует некий полевой аналог в виде ее собственного первичного поля. Такой вывод вовсе не так тривиален, как может показаться на первый взгляд, ведь он относится не к известному электромагнитному полю силового взаимодействия зарядов друг с другом на расстоянии, а к иному, далеко не очевидному, первичному полю микрочастицы. Более конкретно пока можно лишь сказать, что если такое поле действительно реально, то оно обязательно должно быть функционально связано с обычным векторным электромагнитным полем. По этой причине полагаем первичное поле также векторным, где электрическая вектор-компонента  порождена зарядом микрочастицы q, а магнитная компонента  - удельным (на единицу заряда) моментом n(), кратным (n - натуральное число) кванту магнитного потока [1]. А поскольку электрический заряд и спин выявляются опосредовано измерением характеристик электромагнитного поля, то физически логично считать, что и компоненты первичного поля предполагаемых корпускулярно-полевых пар будут также определяться посредством того же электромагнитного поля.

Как видим, наша основная задача - разобраться далее, что должно представлять собой такое поле, каким образом можно аналитически описать его физические свойства и в итоге аксиоматически построить уравнения функциональной взаимосвязи компонент этого гипотетического поля  и  с реально наблюдаемыми в настоящее время компонентами электромагнитного поля в виде электрической  и магнитной  напряженностей.

Можно попытаться уже сейчас поставить вопрос, каким должно быть обсуждаемое первичное поле. Например, известен физически интересный факт, что в волновое уравнение квантовой механики (уравнение Шрёдингера) входит поле векторного магнитного потенциала, которое в принципе не может быть заменено полем вектора магнитной индукции. Вполне возможно, что именно электрическая и магнитная компоненты поля векторного потенциала и есть первичные полевые характеристики микрочастицы, полевой эквивалент ее локальных параметров. Однако сегодня о физических свойствах электромагнитного векторного потенциала известно сравнительно мало, да и вообще пока не ясно, соответствует ли данное предположение действительности. Все это и многое другое мы должны выяснить в процессе проводимых исследований.

Итак, продолжим наши рассуждения. Поскольку компоненты обсуждаемого гипотетического первичного поля есть векторные функции пространственно-временных переменных, то описывающие их поведение дифференциальные уравнения наиболее просто можно получить действием на  и  пространственной производной первого порядка (оператор «набла»)  со свойствами вектора и скалярной частной временной производной . При этом естественно возникает принципиальный вопрос о допустимости именно таких математических действий с точки зрения физического содержания получаемых результатов, их адекватности рассматриваемой проблеме.

В сложившейся ситуации воспользуемся чрезвычайно важным замечанием классика электродинамики Дж.К. Максвелла, который настоятельно призывал [2] ответственно относиться к математическим операциям над векторами электромагнитного поля и их физической трактовке. Вот его слова ([2] п. 12): “В науке об электричестве электродвижущая и магнитная напряженности принадлежат к величинам первого класса – они определены относительно линии. ... Напротив, электрическая и магнитная индукция, а также электрические токи принадлежат к величинам второго класса – они определены относительно площади”. Как видим, тут конкретно говорится о принципиальных различиях электромагнитных векторов: напряженностей  и  – линейных (циркуляционных) векторов, соответственно, электрической  и магнитной  индукций, плотности электрического тока  – потоковых векторов. Здесь материальные параметры среды:  - электрическая и  - магнитная абсолютные проницаемости,  - удельная электропроводность.

В развитие сказанного далее Максвелл обсуждает корректные математические действия над функциями полей указанных векторов с точки зрения физики ([2] п. 14): “В случае напряженности следует брать интеграл вдоль линии от произведения элемента длины этой линии на составляющую напряженности вдоль этого элемента. В случае потоков следует брать интеграл по поверхности от потока через каждый ее элементов”. Тогда в рамках таких условий при переходе к дифференциальной форме записи этих математических действий операция «ротора» (см. теорему Стокса) допустима только для полевых функций линейных векторов:  и , а взятие «дивергенции» (см. теорему Гаусса-Остроградского) возможно лишь от функций поля потоковых векторов: ,  и .

К сожалению, призывы Максвелла к учету физико-математических различий функций векторов электромагнитного поля обычно игнорируют, когда даже в учебной литературе формально пишут физически бессмысленные выражения  и , создавая путаницу понятий в умах читателей, превращая в абсурд процесс познания, а обучение - в бестолковое занятие. Как показывает практика научной работы и преподавание все это следствие завидной живучести в умах самих «просветителей» (часто на подсознательном уровне) инородной электродинамике гауссовой системы единиц с ее безразмерными коэффициентами  и , где векторы  и ,  и  – тождественны. В итоге выхолащивается физическое содержание в соотношениях электромагнетизма и выпячивается на передний план формализм математики. Возможно, этот математический нигилизм и есть одна из причин концептуального застоя в классической электродинамике, которая после Максвелла как наука уже не развивалась, несмотря на серьезную методическую модернизацию исходных максвелловских уравнений и грандиозные успехи внедрения достижений электромагнетизма во многих областях жизни человеческого общества.

Странно, но сложившееся положение дел считается нормальным. Более того, повсеместно с помпой утверждается, что «данная область знания наиболее полно разработана во всех ее аспектах, и настоящий ее уровень является вершиной человеческого гения». Однако надо думать, что эти громкие заявления, конечно, не относятся собственно к самой электромагнитной теории, а касаются только математического уровня ее описания. Ведь математика - всего лишь язык физики. Правда, полезная глобальная математизация современных методов научных исследований порождает иллюзию, что именно уровень развития математики определяет сегодня прогресс наших знаний о Природе. Надо обладать немалым мужеством и веской аргументацией, чтобы в стремлении конструктивно изменить такую, казалось бы, тупиковую ситуацию во всеуслышание утверждать: физические представления классического электромагнетизма – это концептуально недостаточно исследованная область естествознания.

Итак, рассмотрим действие оператора «набла» и частной временной производной на векторные функции обсуждаемого здесь гипотетического первичного поля. Так как для потоковых векторов, следуя здравой логике Максвелла, операция «ротора» недопустима, то функции  и  считаем полями линейных векторов. В этом случае мы получим два (из трех возможных) варианта записи действия указанных операторов на представленные функции:  и ,  и . А преобразование линейных векторов  и  в потоковые  и , аналогичные известным потоковым векторам  и , описывающим отклик пространства среды на воздействие этих полей, позволяет записать другой, скалярный результат действия оператора «набла»:  и .

Эти выражения используем далее для физико-математического построения соотношений функциональной связи компонент гипотетического первичного поля  и  с компонентами электромагнитного поля в виде электрической  и магнитной  напряженностей. Поскольку взятие ротора функции поля линейного вектора дает функцию потокового вектора, то, дабы удовлетворить априорным требованиям взаимосвязи указанных полей, физически логично считать, что циркуляция векторов  и  первичного поля обусловлена явлением электрической  и магнитной  поляризации среды:

(a) , (b) .  (1)

Здесь учтено, что компонента  первичного поля микрочастицы есть полевой эквивалент ее электрического заряда, создающего электрическое поле, а компонента  порождается спином частицы, ответственным за магнитное поле.

В соотношениях (1) ротор функций не равен нулю, что говорит о том, что компоненты первичного поля  и  являются вихревыми. По этой причине дивергентные уравнения для указанных полевых компонент запишем в виде соотношений кулоновской калибровки, определяющих математически чисто вихревой характер таких полей:

(a) , (b) .  (2)

Поскольку действие скалярного оператора частной временной производной  на векторную функцию не меняет ее геометрические свойства, то получаемые при этом новые векторы  и  останутся линейными (циркуляционными) векторами. А потому функциональная связь полей  или  возможна только с компонентами электромагнитного поля линейных векторов  и  напряженностей, причем для однозначного выбора пар этих компонент надо учесть, что равенство векторов возможно только при их коллинеарности. В качестве существенного уточнения заметим, что, согласно соотношениям (1), векторы в парах  и , соответственно,  и  взаимно ортогональны. Таким образом, с необходимостью приходим к соотношениям  и , которые, однако, нельзя считать окончательными. Ведь в наших рассуждениях никак не отражена принципиально важная характеристика материальной среды – ее электрическая проводимость , которой в той или иной мере обладают все реальные среды. А это должно определенно повлиять на окончательный вид данных выражений.

Как известно [1], процесс электропроводности в хорошем приближении описывается законом Ома , где электрическое поле в проводнике с током потенциально: , то есть не может быть вихревым. Следовательно, полученное ранее соотношение  является окончательным. Однако вихревое магнитное поле электрического тока существует. Это следует из закона сохранения заряда , когда подстановки в него выражений закона Ома , теоремы Гаусса  и соотношения (1а) дают , где  - объемная плотность стороннего заряда, а  - постоянная времени релаксации заряда в среде за счет ее электропроводности. В итоге искомые соотношения для вихревых  и  полей запишутся окончательно в виде

(a) , (b) . (3)

Таким образом, собирая полученные в наших физико-математических рассуждениях соотношения (1) - (3) вместе, приходим к системе дифференциальных уравнений функциональной взаимосвязи компонент нашего гипотетического поля  и  с реально наблюдаемыми в настоящее время компонентами электромагнитного поля в виде электрической  и магнитной  напряженностей:

(a) , (b) , (c) ,

(d) , (e) , (g) . (4)

Как видим, данная система уравнений (4) описывает свойства необычного с точки зрения традиционных представлений вихревого векторного электродинамического поля, состоящего их четырех неразрывно связанных векторных компонент , ,  и , которое условно можно назвать реальное электромагнитное поле.

Убедимся теперь, что свойства функций компонент полей в нашей системе уравнений действительно отвечают концепции корпускулярно-полевого дуализма электромагнитных характеристик материи, благодаря которому конкретному локальному параметру частицы соответствует свой полевой аналог в виде собственного первичного поля. Вначале рассмотрим электрическую компоненту  первичного поля, причем для большей наглядности и математической общности представим соотношение (4а) в интегральной форме:

Страницы: 1, 2


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  бесплатно рефераты скачать              бесплатно рефераты скачать

Новости

бесплатно рефераты скачать

© 2010.