бесплатно рефераты скачать
  RSS    

Меню

Быстрый поиск

бесплатно рефераты скачать

бесплатно рефераты скачатьКурсовая работа: Кинетика химических реакций

Курсовая работа: Кинетика химических реакций

Содержание

1.    Введение

2.    Задачи химической кинетики

3.    Химический процесс и его стадии

4.    Открытые и замкнутые системы

5.    Закон сохранения массы и энергии

6.    Химические превращения и тепловые эффекты химических реакций

7.    Теплота образования химических соединений

8.    Закон Гесса и его следствие

9.    Скорость химических реакций

9.1  Основные понятия

9.2  Зависимость скорости гомогенных реакций от концентрации (закон действующих масс)

9.3  Константа скорости химических реакций, ее зависимость от температуры.

10.  Энергия активации

11.  Явление катализа

12.  Обратимые реакции

13.  Химическое равновесие

13.1    Константа равновесия, степень превращения

13.2    Принцип Ле Шателье.

13.3    Смещение химического равновесия под действием температуры и давления

14.  Гомогенные и гетерогенные реакции

15.  Основные типы элементарных реакций

16.  Окислительно-восстановительные реакции

Вывод

Литература


1. Введение

Кинетика химических реакций, учение о химических процессах — о законах их протекания во времени, скоростях и механизмах. При исследовании химических реакций, в частности, используемых в химической технологии, применяют как методы химической термодинамики, так и методы химической кинетики. Химическая термодинамика позволяет вычислить тепловой эффект данной реакции, а также предсказать, осуществима ли данная реакция и ее состояние равновесия, т. е. предел, до которого она может протекать. Для этого необходимо иметь данные о термодинамических параметрах всех компонентов только в начальном и конечном состояниях системы. Но для практики нужно знать не только возможность осуществления данной реакции, но и скорость ее протекания. Ответ на этот вопрос дает химическая кинетика. Для получения кинетических закономерностей должны быть известны не только начальное и конечное состояния системы, но и путь, по которому протекает реакция, а он обычно заранее неизвестен. Поэтому получить кинетические закономерности сложнее, чем термодинамические. Зная эти закономерности (математическую модель) изучаемой химической реакции и ее кинетические параметры, можно рассчитать ее скорость н оптимальные условия проведения в промышленном реакторе. С исследованиями кинетики химических реакций связаны важнейшие направления современной химии и химической промышленности: разработка рациональных принципов управления химическими процессами; стимулирование полезных и торможение и подавление нежелательных химических реакций; создание новых и усовершенствование существующих процессов и аппаратов в химической технологии; изучение поведения химических продуктов, материалов и изделий из них в различных условиях применения и эксплуатации.

Многие уравнения, описывающие протекание во времени химических реакций, пригодны и для описания ряда физических процессов (распад радиоактивных ядер, деление ядерного горючего), а также для количественной характеристики развития некоторых биохимических, в том числе ферментативных, и других биологических процессов (нормальный и злокачественный рост тканей, развитие лучевого поражения, кинетические критерии оценки эффективности лечения).

Отдельные работы в области кинетики химических реакций были выполнены ещё в середине 19 в. В 1850 немецкий химик Л. Вильгельми изучил скорость инверсии тростникового сахара, в 1862—63 М. Бертло — скорость реакций этерификации. В работах Н. А. Меншуткина получили развитие (1882—90) такие основные проблемы химии, как связь между строением веществ и их реакционной способностью, влияние среды на ход химического превращения. В 80-х гг. 19 в. Я. Вант-Гофф и С. Аррениус сформулировали основные законы, управляющие простыми химическими реакциями, и дали трактовку этих законов, исходя из молекулярно-кинетической теории. Дальнейшее развитие этих работ привело к созданию в 30-х гг. 20 в. Г. Эйрингом и М. Поляни на базе квантовой механики и статистической физики теории абсолютных скоростей реакций, открывающей перспективы расчёта скоростей простых (элементарных) реакций, исходя из свойств реагирующих частиц.

Параллельно развивались работы по изучению кинетики сложных реакций. Среди первых в этой области были исследования А. Н. Баха и Н. А. Шилова по реакциям окисления. Они включили в предмет химической кинетики представления о решающей роли промежуточных продуктов и промежуточных реакций в химическом превращении. Большую роль в разработке общих методов подхода к изучению сложных реакций сыграли работы М. Боденштейна. Выдающимся достижением теории сложных химических процессов явилась созданная в 30-х гг. Н. Н. Семеновым общая теория цепных реакций. Широкие исследования механизма сложных кинетических процессов, особенно цепных реакций, были выполнены С. Н. Хиншелвудом.

2. Задачи химической кинетики

Химическая кинетика трактует качественные и количественные изменения в ходе химического процесса, происходящие во времени. Обычно эту общую задачу подразделяют на две более конкретные:

1) выявление механизма реакции установление элементарных стадий процесса и последовательности их протекания (качественные изменения);

2) количественное описание химической реакцииустановление строгих соотношений, которые могли бы удовлетворительно предсказывать изменения количеств исходных реагентов и продуктов по мере протекания реакции.

Также в зависимости от необходимости нахождения концентрации веществ по схеме реакции либо восстановление схемы по известным концентрациям ставится задача прямая или обратная.

1) Под прямой задачей химической кинетики понимают задачу нахождения концентраций участвующих в реакции веществ в любой момент времени, исходя из известных начальных концентраций, схемы реакции и констант скоростей отдельных стадий.

2) Обратная задача химической кинетики — восстановление по известной зависимости концентрации веществ от времени схемы реакции и констант скорости.


3. Химический процесс и его стадии

Химическая реакция (процесс) состоит в превращении одного или нескольких химических веществ, называемых исходными веществами, в одно или несколько других химических веществ, называемых продуктами реакции. Химические реакции, как правило, являются сложными, т. е. протекают через ряд элементарных стадий. Элементарная стадия является наиболее простой составной частью сложной реакции: каждый акт элементарной стадии представляет собой результат непосредственного взаимодействия и превращения нескольких частиц. Совокупность реакций из элементарных стадий называется механизмом реакции. При протекании реакции по стадиям получаются и расходуются промежуточные вещества. Промежуточными веществами обычно являются активные частицы с не спаренными электронами, так называемые радикалы. Сложные реакции могут состоять из двусторонних, параллельных и последовательных элементарных стадий. Все элементарные стадии являются двусторонними (обратимыми), т. е. - состоят из двух взаимно противоположных элементарных реакций, которые одновременно протекают в прямом и обратном направлениях, но с разной скоростью. При параллельном протекании нескольких элементарных стадий данное вещество одновременно расходуется по нескольким путям с образованием разных продуктов. При последовательном протекании элементарных стадий промежуточное вещество, полученное в одной стадии, расходуется другой. Механизм большинства реакций точно не известен, так как промежуточные вещества обычно очень неустойчивы и доказать экспериментально их существование довольно сложно. Поэтому, как правило, у сложных реакций промежуточные вещества неизвестны, а известен только наиболее вероятный механизм, т. е. предполагаемый механизм протекания реакции по стадиям, на основе которого можно получить закономерность (математическую модель), адекватно отражающую основные черты реального процесса. Таким образом, элементарной стадией химической реакции называется сумма актов химического превращения при одновременном сближении (столкновении) нескольких (обычно двух) частиц; при этом энергия связей перераспределяется между атомами с образованием активированного комплекса с его последующим распадом и получением новых частиц. В случае мономолекулярного акта образование активированного комплекса происходит за счет перераспределения энергии между связями атомов внутри молекулы, как следствие ее активации в результате внешних воздействий.


4. Открытые и замкнутые системы

Системы, в которых происходит химическое превращение, могут быть замкнутыми или открытыми.

Замкнутой называется система, в которой отсутствует материальный обмен с окружающей средой. В замкнутую систему в начале процесса вводится некоторое количество исходных веществ, которые далее претерпевают ряд химических превращений переходят в промежуточные вещества и продукты реакции, но все эти вещества до окончания процесса остаются в пределах рассматриваемой системы, т.е. не выводятся из реакционного сосуда.

С некоторой степенью) точности замкнутой системой можно считать каждый элемент объема в ламинарном потоке. Если струя газа или жидкости проходит через реакционный сосуд, в котором (например, достаточно высокая температура или присутствие необходимого катализатора), то при отсутствии конвекции и достаточно малой скорости диффузии вещества в направлении потока каждый объем реакционной смеси можно рассматривать как независимой от остальных, т. е. как перемещающуюся в пространстве замкнутую систему. Такой способ проведения химических реакций широк используется в научно-исследовательской работе и в промышленности. Соответствующие реакторы получили название реакторы идеального смешения.

С точки зрения химической кинетики важнейшей особенностью замкнутых систем является то обстоятельство, что изменение количества какого-либо химического соединении в таких системах происходит только в результате химического превращения. Поэтому суммарное число моделей каждого из элементов, присутствующих в системе, остается неизменным на протяжении всего химического процесса.

Наряду с этим в природе, технике и в научных исследованиях встречаются системы с непрерывном поступлением исходных веществ и уводов продуктов реакции за счет диффузии или других видов массопередачи. Системы, в которых имеет место материальный обмен с окружающей средой, называются открытыми системами.

Наиболее простым типом открытой системы является реактор идеального смешения, в который с определенной скоростью подаются исходные вещества и одновременно выводится такое же по объему количество реакционной смеси. При этом в пределах реактора за счет интенсивного перемешивания или энергичной циркуляции смеси через реактор (при проведении гетерогенно-каталитических реакций) обеспечивается однородный состав реакционной смеси.


5. Закон сохранения массы и энергии

Масса веществ, вступающих в реакцию равна массе веществ, образующихся в результате реакции.

Взаимосвязь массы и энергии выражается уравнением Энштейна: Е=mc2

где Е – энергия; m – масса; с – скорость света в вакууме. Закон сохранения массы дает материальную основу для составления уравнений химических реакций и проведения расчетов по ним.

Закон постоянства состава. Состав соединений молекулярной структуры, т. е. состоящих из молекул, является постоянным независимо от способа получения. Состав же соединений с немолекулярной структурой (с атомной, ионной и металлической решеткой) не является постоянным и зависит от условий получения.


6. Химические превращения и тепловые эффекты химических реакций

Наличие химических формул для всех веществ позволяет изображать химические реакции посредством химических уравнений. Наиболее характерными признаками химической реакции являются следующие внешние изменения реакционной среды: 1) выделение газа; 2) образование осадка; 3) изменение окраски; 4) выделение или поглощение теплоты.

Химическая реакция заключается в разрыве одних и образовании других связей, поэтому она сопровождается выделением или поглощением энергии в виде теплоты, света, работы расширения образовавшихся газов.

По признаку выделения или поглощения теплоты реакции делятся на экзотермические и эндотермические.

Количество теплоты, которое выделяется или поглощается в результате реакций между определенными количествами реагентов, называют тепловым эффектом химической реакции и обычно обозначают символом Q. Наряду с тепловым эффектом термохимические процессы очень часто характеризуют разностью энтальпий ∆ H продуктов реакции и исходных веществ.

Энтальпия Н — это определенное свойство вещества, оно является мерой энергии, накапливаемой веществом при его образовании.

Процессы, протекающие при постоянном давлении, встречаются гораздо чаще, чем те, которые протекают при постоянном объеме, так как большинство из них проводится в открытых сосудах. Доказано, что в химических процессах, протекающих при постоянном давлении, выделившееся (или поглощенное) тепло есть мера уменьшения (или соответственно увеличения) энтальпии реакции ∆ H.

При экзотермических реакциях, когда тепло выделяется, ∆Н отрицательно. При эндотермических реакциях (тепло поглощается) иH положительно.

7. Теплота образования химических соединений

 

Теплотой образования соединения называется количество теплоты, которое выделяется или поглощается при образовании одного моля химического соединения из простых веществ при стандартных условиях (р = 105 Па, T = 298 К). Она измеряется в кДж/моль. Согласно этому определению, теплота образования простого вещества при стандартных условиях равна 0.

Изменение энтальпии ∆Н зависит от давления и температуры. Поэтому для того, чтобы облегчить сравнение термохимических данных для различных реакций, были приняты определенные стандартные состояния (условия).

При написании термохимических уравнений твердое вещество, жидкость и газ обязательно обозначаются символами (тв), (ж) и (г) соответственно, поскольку изменение энтальпии зависит от агрегатного состояния реагирующих веществ и продуктов реакции. Стандартное состояние: для газа — состояние чистого газа при 105 Па; для жидкости состояние чистой жидкости при 105 Па; для твердого вещества — наиболее устойчивое при давлении 105 Па кристаллическое состояние, например графит у углерода, ромбическая сера у серы и т. п. Стандартное состояние всегда относится к 298 К. Так, например, термохимическое уравнение образования воды из водорода и кислорода записывается следующим образом:

H2(г)O2(г)=H2O(ж) + 286кДж

Значение 286 кДж является теплотой образования воды в стандартных условиях и означает, что при образовании 1 моля воды выделяется 286 кДж теплоты:


∆Нобр(H2O(ж))=-286кДж/моль.

Значение теплоты образования газообразной воды уже будет иным:

H2(г)O2(г)=H2O(г) + 242кДж


8. Закон Гесса и его следствия

Важнейшим законом, на котором основано большинство термохимических расчетов, является закон Гесса (его называют также законом суммы тепловых эффектов).

Тепловой эффект химической реакции зависит от состояния исходных веществ и продуктов реакции, но не зависит от промежуточных стадий реакций.

Пример: Тепловой эффект реакции окисления углерода в оксид углерода (IV) не зависит от того, проводится ли это окисление непосредственно:

С(тв) + О2(г) = СО2(г) (∆Н1)

или через промежуточную стадию образования оксида углерода (II):

С(тв) + ½О2(г) = СО(г) (∆Н2)

С(тв) + ½О2(г) = СО2(г) (∆Н3)

Из закона Гесса следует, что если известны общий тепловой эффект реакции и тепловой эффект одной из двух ее промежуточных стадий, то можно вычислить тепловой эффект (х) второй промежуточной стадии, т. е. если

∆Н1= ∆Н2 + ∆Н3(∆Н2 = х), то х=∆Н1 - ∆Н3

Это положение очень важно, так как позволяет рассчитывать тепловые эффекты для реакций, не поддающихся непосредственному экспериментальному изучению.

Если теплота образования какого-либо вещества из простых веществ не измерена экспериментально, то для расчета можно воспользоваться значениями ∆Н ряда других соединений; комбинируя эти значения, можно получить ∆Н обр искомого соединения.

Особенно удобно проводить такие расчеты, используя следствия, непосредственно вытекающие из закона Гесса:

Тепловой эффект химической реакции равен разности суммы теплот образования продуктов реакции и суммы теплот образования исходных веществ (суммирование проводится с учетом числа молей веществ, участвующих в реакции, т. е. стехиометрических коэффициентов в уравнении протекающей реакции):

Q=∑ni Qi - ∑njQj ,

Здесь Qi, Qj — теплоты образования продуктов реакции и исходных веществ соответственно; ni, и nj стехиометрические коэффициенты в правой и левой частях термохимического уравнения соответственно.

Аналогичным образом можно записать:

Н =∑niНi - ∑njНj ,

где ∆Н — изменение энтальпии соответствующей реакции, ∆Нi, ∆Нj— энтальпии образования продуктов реакции и исходных веществ соответственно.


9. Скорость химической реакции

9.1 Основное понятие

Основным понятием в химической кинетике является, понятие о скорости реакции:

Скорость химической реакции определяется количеством вещества, прореагировавшего в единицу времени в единице объема.

Если при неизменных объеме и температуре концентрация одного из реагирующих веществ уменьшилась от с1 до с2 за промежуток времени от t1 до t2, то в соответствии с определением скорость реакции за данный промежуток времени равна:

v = -(c2 - c1)/(t2 - t1) = -∆c/∆t ,

Знак -” в правой части уравнения появляется т. к. по мере протекания реакции (t2-t1 > 0) концентрация реагентов убывает, следовательно, c2-c1 < О, а так как скорость реакции всегда положительна, то перед дробью следует поставить знак “-”.

Обычно для реакций, протекающих в газах или растворах, концентрации реагентов выражают в моль/л, а скорость реакции — в моль/(л* с).

Страницы: 1, 2


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  бесплатно рефераты скачать              бесплатно рефераты скачать

Новости

бесплатно рефераты скачать

© 2010.