бесплатно рефераты скачать
  RSS    

Меню

Быстрый поиск

бесплатно рефераты скачать

бесплатно рефераты скачатьКурсовая работа: Участок по переработке лома твёрдых сплавов способом хлорирования

Курсовая работа: Участок по переработке лома твёрдых сплавов способом хлорирования

Федеральное агентство по образованию

Московская государственная академия тонкой химической технологии

им. М.В. Ломоносова

Кафедра химии и технологии редких и рассеянных элементов

им. К.А. Большакова

Курсовой проект

тема: "УЧАСТОК ПО ПЕРЕРАБОТКЕ ЛОМА ТВЁРДЫХ СПЛАВОВ СПОСОБОМ ХЛОРИРОВАНИЯ"

Научный руководитель: доцент, к. х. н. Маслов Л.П.
Выполнил студент гр. ТС-51 Бичевой С.М.

Москва 2007 г.


ОГЛАВЛЕНИЕ

 

1. Введение.. 5

2. Литературный обзор. 6

2.1. Твёрдые сплавы. 6

2.2. Классификация твёрдых сплавов. 7

2.3. Свойства твердых сплавов и области их применения. 8

2.4. Основные российские производители твёрдых сплавов. 12

3. Предварительная обработка твёрдых сплавов. 17

3.1. Источники лома твёрдых сплавов. 17

3.2. Основные способы переработки твёрдых сплавов. 17

3.2.1. Хлорирование. 17

3.2.2. Методы регенерации твёрдого сплава. 18

3.2.3. Окислительные методы. 18

3.3. Основные этапы подготовки лома твёрдых сплавов. 19

3.4. Исходные данные: 21

3.5. Свойства компонентов вторичного сырья, которые могут быть использованы при разработке принципиальной технологической схемы процесса переработки сырья [6]. 22

3.6 Обоснование выбора стадий предварительной обработки сырья. 23

3.7. Выбор оборудования для предварительной обработки сырья. 25

3.7.1. Одновальцовая дробилка CEB 16/40. 25

3.7.2. Молотковая мельница CHM 23/20. 27

3.7.3. Магнитный сепаратор ПБС-63/50. 28

4. Хлорирование подготовленного сырья. 30

4.1. Хлориды и оксохлориды вольфрама. 30

4.1.2. Оксохлориды вольфрама. 32

4.2. Разработка способа хлорирования сырья. 33

4.2.1. Выбор параметров процесса хлорирования. 34

4.2.2. Выбор стабильного сечения тройной системы, продукты реакций. 34

4.3. Разработка принципиальной схемы.. 37

4.4. Разработка аппаратурно-технологической схемы.. 38

4.4.1. Аппаратурное оформление. 40

4.4.1. Аппаратурное оформление. 41

4.4.2.Описание схемы переработки твердого сплава. 41

5. Расчет материального баланса. 48

5.1 Уравнения материального баланса. 49

5.1.1. Расчет блока №1. 49

5.1.2. Расчет блока № 2. 50

5.1.3. Расчет блока № 3. 51

5.1.4. Расчет блока № 4. 51

5.1.5. Расчет блока № 5. 52

5.1.6. Расчет блока № 6. 52

5.2 Расчет технологической схемы в целом. 53

5.1. Уравнения материального баланса. 59

5.1.1. Расчет потоков: 60

5.1.2. Расчет циклонной пыли. 60

5.1.4. Количество связующих веществ в исходной шихте. 62

5.2 Окисление карбидов. 62

5.2.1. Окисление WC: 62

5.2.2. Окисление TiC: 63

5.2.3. Окисление Со: 64

5.2.4. Окисление Zn: 66

5.2.5. Окисление Си: 67

5.2.6. Окисление Ге: 68

5.2.7. Теоретическое количество воздуха. 70

5.5 Блок 5 Прокалка и сушка. 79

8. Вывод.. 85

9. Список литературы... 87


1. Введение

В настоящее время для производства режущих инструментов широко используются твердые сплавы. Они состоят из карбидов вольфрама, титана, тантала, сцементированных небольшим количеством кобальта. Карбиды вольфрама, титана и тантала обладают высокой твердостью, износостойкостью. Скорости резания инструментами, оснащенными твердыми сплавами, в 3-4 раза превосходят скорости резания инструментами из быстрорежущей стали.

В 2000 г. исключая Китай, было произведено около 30000 т твердых сплавов. Около 67% от всего количества твердых сплавов используется в мире в режущем инструменте.

Динамика развития производства твердых сплавов может быть проиллюстрирована следующим фактом: в период 1979-1991 гг., т.е. за 12 лет, спрос в мире на режущий инструмент удвоился.

Пропорционально использованию твердых сплавов растет количество амортизационного лома, брака при изготовлении инструментов, пылевидных отходов, образующиеся при заточке инструмента и т.д.

Данные виды отходов, возможно повторно переработать, что экономически более целесообразно чем производство металла из руды. Использование вторичного сырья позволяет решить ряд важнейших проблем: сохранение невосполнимых природных ресурсов; улучшение экологической обстановки; снижение капитальных и энергетических затрат; повышение производства редких металлов.

Цель данной работы состоит: в разработке схемы переработки лома твердых сплавов способом хлорирования, при заданных производительности, температуре обжига и способе подготовки сырья.

Подборе необходимого технологического оборудования.

Оценке экономической эффективности переработки.

Оценке данного процесса с точки зрения безопасности.

2. Литературный обзор

2.1. Твёрдые сплавы.

Твердые сплавы представляют собой композиционные материалы. Композиционный материал представляет собой высокопрочный или высокомодульный материал, называемый армирующим компонентом, соединенный со вторым материалом, называемым матрицей. Композиционные материалы обычно сочетают в себе свойства той и другой составляющих, однако модифицированные условиями их сосуществования.

Размеры частиц твердой карбидной и более мягкой цементирующей фаз обычно весьма малы и для большинства технических сплавов составляет 0,5-10,0 мкм.

Наиболее широкое развитие в области производства и применения получили инструментальные твердые сплавы, которые изготавливаются на основе карбида вольфрама, карбида титана, карбида тантала или сочетаний этих карбидов, иногда с карбидом ниобия, ванадия, хрома в качестве небольших добавок. "Цементирующим" металлом в сплавах служит кобальт, а иногда - никель, железо, молибден.

Сплавы отличаются высокой твердостью (HRA 82-92), сочетающейся с сопротивлением изнашиванию при трении о металлы и о неметаллические материалы, эти свойства сохраняются в значительной степени и при повышенных температурах.

Сплавы не подвергаются заметной пластической деформации при низких температурах и почти не подвержены упругой деформации: величина модуля упругости у твердых сплавов выше, чем у всех известных в технике материалов. Твердые сплавы отличаются также весьма высоким пределом прочности при сжатии. Значение предела прочности при изгибе и ударной вязкости этих сплавов невелики. Сплавы обладают относительно высокой теплопроводностью и электропроводностью, приближающейся к электропроводности железа и его сплавов. В химическом отношении твердые сплавы являются весьма устойчивыми против воздействия кислот и щелочей, некоторые сплавы заметно не окисляются на воздухе даже при 600-800°С. Изделия из твердых сплавов производятся методами порошковой металлургии, позволяющими создать сплавы из компонентов, значительно различающихся по температуре плавления. Наиболее тугоплавкие компоненты не должны подвергаться плавлению в целях придания сплаву нужных свойств.

Карбиды тугоплавких металлов групп IVА-VIA при повышенных температурах приобретают особые свойства. Для них характерны высокие значения модуля Юнга 2,8 • 105-6,5 • 106 МПа, в то время как для большинства переходных металлов эта величина равна 1,4 • 105-3 106 МПа. При комнатной температуре карбиды - хрупкие материалы, но при высоких температурах (около 1300 К) они переходят в пластичное состояние, а при температурах выше 1300 К пластически деформируются и известны как самые прочные материалы. Поскольку эти карбиды обладают такой исключительной термопрочностью и хорошей коррозионной стойкостью, их все более широко начинают применять как высокотемпературные конструкционные материалы в ядерной энергетике, ракетной и космической технике, в авиации и других областях. Карбиды используются там, где обычные сплавы не могут работать длительное время из-за слишком высоких рабочих температур. Например, карбид вольфрама (с никелем в качестве связующего) используют для изготовления колец, сопел и других деталей ракетных двигателей. [1]

2.2. Классификация твёрдых сплавов.

Твердые сплавы классифицируются по следующим признакам:

по составу:

WC-Co твердые сплавы;

W-TiC-Co твердые сплавы;

WC-(Ti, Та, Nb) С-Со твердые сплавы;

керметы (твердые сплавы с большим содержанием TiC/TiN);

специальные твердые сплавы (сплавы WC-Ni);

по величине зерна (дисперсности) карбидной фазы:

нанокристаллические - средняя величина зерна менее 0,1 мкм;

ультрадисперсные 0,2-0,5 мкм;

субмикронные 0,8-1,5 мкм;

среднезернистые 2,0-3,0 мкм;

крупнодисперсные 4,0-6,0 мкм;

особо крупнозернистые 8,0-15,0 мкм;

По областям применения:

Обработка материалов резанием (обработка со снятием стружки: резание, фрезерование, строгание, сверление): стали, чугуна, цветных металлов, неметаллических материалов и дерева;

Горно-буровые работы (бурение на газ и нефть, проходка туннелей), обработка дорожного покрытия, камнеобработка;

Бесстружковая обработка металлов (формообразующий инструмент при волочении, высадке, выдавливании, прокатке металлов), вырубка, отрезка, штамповка;

Работа в тяжелых условиях, в том числе в агрессивной коррозионной среде (быстро изнашивающиеся и конструкционные детали).

2.3. Свойства твердых сплавов и области их применения.

Свойства твердых сплавов и, следовательно, области их применения зависят от состава и зернистости карбидной фазы (WC, TiC, TaC), а также от соотношения карбидной и связывающей фаз. Регулированием этих факторов можно в определенных пределах менять свойства сплавов.

Рис.2.3.1. Зависимость твердости различных инструментальных материалов от температуры испытания:

1 - углеродистая сталь; 2 - быстрорежущая сталь; 3 - твердый сплав


В соответствии с ГОСТ 3882–74 в РФ выпускают три группы твердых сплавов: вольфрамовая (однокарбидная), титановольфрамовая (двухкарбидная), и титанотанталовольфрамовая (трехкарбидная). Их марки, состав и физико-механические свойства приведены в табл.2.4.1

Сплавы вольфрамовой группы (WC-Со) имеют наибольшую прочность, но более низкую твердость, чем сплавы других групп. Они теплостойки до 800 °С. Их применяют в режущем инструменте для обработки чугунов, сталей, цветных сплавов и неметаллических материалов. Повышенная износостойкость и сопротивляемость ударам сплавов группы ВК определяет их применение в горном инструменте и для изготовления штампов, пуасонов, матриц, фильер и т.п.

Сплавы второй группы (WC-TiC-Co) имеют более высокую теплостойкость (до 900–1000 °С) и твердость. Это связано с тем, что карбид вольфрама частично растворяется в карбиде титана при температуре спекания с образованием твердого раствора (Ti, W) С, имеющего более высокую твердость, чем WC. Структура карбидной фазы зависит от соотношения WC и TiC в шихте. В сплаве Т30К4 образуется одна карбидная фаза - твердый раствор (Ti, W) С, который придает сплаву максимальную твердость (HRA 92), но пониженную прочность. В остальных сплавах этой группы количество WC превышает растворимость в TiС, поэтому карбиды вольфрама в них присутствуют в виде избыточных частиц. Эти сплавы применяют в основном для высокоскоростной обработки сталей и чугунов.

Третью группу образуют сплавы системы (WC-TiC-TaC-Co). В этих сплавах структура карбидной основы представляет собой твердый раствор (Ti, Та, W) С, и избыток WC. Сплавы этой группы отличатся от предыдущей большей прочностью, лучшей сопротивляемостью вибрациям и выкрашиванию. Они применяются в наиболее тяжелых условиях резания - при черновой обработке стальных поковок, отливок, а также труднообрабатываемых сталей и сплавов.

Общим недостатком рассмотренных сплавов, помимо высокой хрупкости, является повышенная дефицитность исходного вольфрамового сырья - основного компонента, определяющего их повышенные физико-механические характеристики [7].

Таблица 2.3.1. Марки, химический состав и характеристики спеченных твердых сплавов (ГОСТ 3882–74) [7].

Группы Марки Массовая доля основных компонентов в смеси порошков,% Физико-механические свойства
WC TiC TaC Co

Предел прочности при изгибе, МПа (кгс/мм2),

не менее

Плотность,

(кг/м3) · 10–3

Твердость по Роквеллу по шкале А, [HRA]  не менее
Вольфрамовая ВК3 97 3 1176 (120) 15,0–15,3 89,5
ВК3-М 97 3 1176 (120) 15,0–15,3 91,0
ВК4-В 96 4 1470 (150) 14,9–15,2 88,0
ВК6 94 6 1519 (155) 14,6–15,0 88,5
ВК6-М 94 6 1421 (145) 14,8–15,1 90,0
ВК6-ОМ 92 2 6 1274 (130) 14,7–15,0 90,5
ВК6-В 94 6 1666 (170) 14,6–15,0 87,5
ВК8 92 8 1666 (170) 14,4–14,8 88,0
ВК8-В 92 8 1813 (185) 14,4–14,8 86,5
ВК8-ВК 92 8 1764 (180) 14,5–14,8 87,5
ВК10 90 10 1764 (180) 14,2–14,6 87,0
ВК10-КС 90 10 1862 (190) 14,2–14,6 85,0
ВК11-В 89 11 1960 (200) 14,1–14,4 86,0
ВК11-ВК 89 11 1862 (190) 14,1–14,4 87,0
ВК15 85 15 1862 (190) 13,9–14,4 86,0
ВК20 80 20 2058 (210) 13,4–13,7 84,0
ВК20-КС 80 20 2107 (215) 13,4–13,7 82,0
ВК10-ХОМ 88 2 10 1470 (150) 14,3–14,7 89,0
Титановольф- рамовая Т30К4 66 30 4 980 (100) 9,5–9,8 92,0
Т15К6 79 15 6 1176 (120) 11,1–11,6 90,0
Т14К8 78 14 8 1274 (130) 11,2–11,6 89,5
Т5К10 85 6 9 1421 (145) 12,4–13,1 88,5
Т8К7 85 8 7 1519 (155) 12,8–13,1 90,5
Титанотантало-вольфрамовая ТТ7К12 81 4 3 12 1666 (170) 13,0–13,3 87,0
ТТ8К6 84 8 2 6 1323 (135) 12,8–13,3 90,5
ТТ10К8-Б 82 3 7 8 1617 (165) 13,5–13,8 89,0
ТТ20К9 71 8 12 9 1470 (150) 12,0–12,5 91

Таблица 2.3.2. Область применения твердых сплавов [7]

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  бесплатно рефераты скачать              бесплатно рефераты скачать

Новости

бесплатно рефераты скачать

© 2010.