бесплатно рефераты скачать
  RSS    

Меню

Быстрый поиск

бесплатно рефераты скачать

бесплатно рефераты скачатьКурсовая работа: Термодинамика необратимых процессов и проблем экологии

Курсовая работа: Термодинамика необратимых процессов и проблем экологии

Федеральное агентство образования

ПГПУ им. Белинского

Физико-математический факультет

Кафедра общей физики

Курсовая работа

"Термодинамика необратимых процессов и проблем экологии"

Подготовила: студентка гр. М-42

Отпущенникова Людмила

Проверила: доцент Ляпина Т.В.

Пенза 2007


Содержание

Введение

1. Основные понятия

2. Первое начало термодинамики

3. Энтропия и вероятность

4. Энтропия и приведенная теплота

5. Второе начало термодинамики

6. Обратимые и необратимые процессы

7. О тепловой смерти мира

8. Термодинамическая шкала температур. Третье начало термодинамики. Недостижимость абсолютного нуля

9. Необходимые и достаточные условия существования систем

10. Энтропия Земли

11. Энтропия и критерий технического прогресса

Библиография


Введение

Термодинамика изучает закономерности теплового движения в равновесных системах и при переходе систем в равновесие (классическая или равновесная, термодинамическая), а так же обобщает эти закономерности на неравновесные системы равновесная термодинамическая или термодинамика необратимых процессов.

Термодинамика необратимых процессов является сравнительно молодым и интенсивно развивающимся разделом термодинамической физики. Она возникла в результате обобщения классической термодинамики на область малых отклонений системы от равновесия и в дальнейшем была распространена на построение теории процессов в сильно неравновесных системах.

Прежде чем перейти к изложению основных законов и методов термодинамики и изучения свойств различных систем, раскроем содержание главных термодинамических понятий.


1. Основные понятия

Макроскопическая система - всякий материальный объект, всякое тело, состоящее из большого числа частиц.

Равновесное состояние системы - это такое состояние, когда в системе не только все параметры постоянны во времени, и нет никаких стационарных потоков за счет действия каких-либо внешних источников.

Изолированная или замкнутая система - система, которая не обменивается с окружающими телами ни энергией, ни веществом.

Открытая система - система, которая обменивается с окружающими телами энергией и веществом.

Закрытая система - система, не обменивающаяся с другими телами веществом, но обменивающаяся энергией.

Энергия системы - энергия непрерывно движущихся и взаимодействующих частиц.

Полная энергия системы разделяется на внешнюю и внутреннюю.

Часть энергии, состоящая из энергии движения системы как целого и потенциальной энергии системы в поле внешних сил, называется внешней энергией. Остальная часть энергии системы называется внутренней энергией.

Количество теплоты - энергия, переданная системе без изменения её внешних параметров.

Процесс называется равновесным или квазистатическим, если все параметры системы изменяются физически бесконечно медленно, так что система все время находится в равновесных состояниях.

Время релаксации - промежуток времени, в течении которого система возвращается в состояние равновесия.

Если изменение какого-либо параметра a происходит за время t, меньшее или равное времени релаксации τ (t≤τ), так что , то такой процесс называется неравновесным или нестатическим.

Процесс перехода системы из состояния 1 в 2 называется обратимым, если возвращение этой системы в исходное состояние из 2 в 1 можно осуществить без каких бы то ни было изменений в окружающих внешних телах.

Процесс же перехода системы из состояния 1 в 2 называется необратимым, если обратный переход системы из 2 в 1 нельзя осуществить без изменений в окружающих телах.

2. Первое начало термодинамики

Термодинамика - дедуктивная наука. Её основные успехи могут быть охарактеризованы тем, что она позволяет получить множество различных соотношений межу величинами, определяющими состояние тел, опираясь на весьма общие электрические законы - начала-термодинамики.

Обсудим содержание этих основных законов и соответствующим им основных уравнений термодинамики.

Одной из аксиом термодинамики является первое начало термодинамики, утверждающее следующее: внутренняя энергия термодинамической системы является функцией состояния, изменяющейся только при взаимодействии с окружением. Изменение внутренней энергии связано с работой и количеством теплоты уравнением первого начала термодинамики:

δQ = dE + δА. (1)

Выражение (1) по существу является законом сохранения энергии, описывающим взаимодействие макросистемы с окружением.

Первое начало термодинамики, устанавливая связь между dE, δА и δQ, тем самым позволяет свести измерение dE к измерению макроскопических величин, таких как работа или количество теплоты.

С другой стороны, первое начало термодинамики позволяет сделать определенный вывод о той механической работе, которую можно получить в том или ином процессе, что представляет большой практический интерес. Исторически установление первого начала термодинамики (закона сохранения энергии) было связано как раз с неудачами при попытках сконструировать машину, которая совершала бы работу, не затрачивая при этом никакой энергии и не получая теплоты извне. В термодинамике такую неосуществимую машину называют вечным двигателем первого рода.

Для периодически действующей машины dE = 0; поэтому для периодического производства ею работы в силу закона сохранения энергии необходимо или подводить количество теплоты δQ или использовать работу δА других источников энергии. Невозможно построить вечный двигатель, который производил бы большую работу, чем количество поглощаемой им извне энергии. Последнее утверждение можно рассматривать как одну из формулировок первого начала термодинамики. В дальнейшем для обозначения элементарного изменения внутренней энергии dE, элементарной работы δА и количества теплоты δQ будем использовать только один символ: d.

3. Энтропия и вероятность

Понять энтропию - это знать ее происхождение, знать связь ее с другими понятиями, уметь применять энтропию на практике.

Чем больше связей знают читатели между энтропией и другими понятиями, тем лучше они усваивают, что такое энтропия.

В приборе Гей-Люссака в одном шаре находится газ (при малой его плотности). Другой шар эвакуирован. Открывают кран на трубке, соединяющей оба шара. Результат опыта известен: газ равномерно заполняет оба шара. Температура всего газа та же, что и до расширения. При самопроизвольном изотермическом расширении газа увеличивается его энтропия (процесс адиабатический, и энтропия источников теплоты не изменяется). Самопроизвольное сжатие газа в приборе Гей-Люссака до прежнего объема исключено: энтропия уменьшилась бы.

Газ состоит из молекул (некоторые газы состоят из атомов). В газе малой плотности одна молекула воздействует на другую только в короткие моменты столкновений между молекулами. Большую же часть времени молекула свободно двигается по объему, предоставленному всему газу.

Предположим, что физик может отличить одну молекулу от других. Физика спрашивают, в каком шаре находится выбранная молекула, подчеркнутая красным, как говорил Эйнштейн. (Объемы шаров, чтобы упростить рассуждения, равны) Физик ответит: до наблюдения не знаю. Он сошлется на то, что на выбранную молекулу (как и на все остальные) ничего не воздействует. Выбранная молекула (как и все остальные) никак не предпочитает один шар другому. Объемы шаров равны. Поэтому и физик не может предпочесть один шар другому. На техническом языке, вероятность нахождения выбранной молекулы в любом из шаров равна половине. Сумма вероятностей равна единице (половина плюс половина), равна достоверности. В каком-нибудь из двух шаров выбранная молекула обязательно находится.

Физику дальше ставят как будто совсем неразрешимый вопрос: в каком из шаров находятся все молекулы газа? На вопрос, где находится одна выбранная молекула, физик не мог ответить. Где же ему ответить на второй вопрос?! Ведь при О °С и 1 атм в 1 см3 газа находится 2,7x1019 молекул. [Для сопоставления: пять миллиардов лет (возраст Земли) - 1,6х1017 секунд.] Физик, однако, с полной уверенностью ответит: ни в одном из шаров не содержатся все молекулы газа. Молекулы газа равномерно распределены между обоими шарами. Во всяком случае, отклонение от равномерного распределения при значительном объеме шаров, значит, и при большом числе молекул крайне мало, и этим отклонением можно спокойно пренебречь.

Откуда такая уверенность? Из подсчета вероятностей. Именно потому, что для каждой молекулы вероятность находиться в том или другом шаре равна половине, все молекулы не могут находиться в одном только шаре. Вероятность такого случая тем меньше, чем больше число молекул. При том числе молекул, с каким обычно имеют дело в термодинамике, вероятность скопления всех молекул в одном только шаре чрезвычайно мала. Выдающийся французский математик Э. Борель (1871-1956) писал: "Я пришел к выводу, что не следует бояться применить слово достоверность для обозначения вероятности, которая отличается от единицы на достаточно малую величину". Статистический закон для большого числа молекул пробил себе дорогу через случайности для отдельной молекулы.

Приведенный пример свидетельствует, что существует связь между возрастанием энтропии в опыте Гей-Люссака и вероятностью распределения газа между обоими шарами. Обобщая, можно сказать: при самопроизвольном процессе система переходит из менее вероятного состояния в более вероятное.

4. Энтропия и приведенная теплота

Первое начало термодинамики позволяет определить, возможен ли с энергетической точки зрения тот или иной процесс в замкнутой системе. Но оно ничего не говорит о возможных направлениях процессов (в частности самопроизвольных). Так, например, первый закон не запрещает самопроизвольного перехода теплоты от холодного тела к горячему, либо концентрирования газа в малой части сосуда и снижения давления в остальной части сосуда. Но, как известно, в природе такие процессы не наблюдаются.

Для суждения о возможном направлении процессов в термодинамике вводится еще одна функция состояния - энтропия.

Так как энтропия является функцией состояния макросистемы, то внутренняя энергия может рассматриваться как функция энтропии и, в простейшем случае, одного внешнего параметра, например V.

Тогда

 (2)

При равновесных процессах . С другой стороны, первое начало термодинамики утверждает, что

 (3)

Сравнивая выражения (2) и (3), нетрудно установить тождественность этих соотношений при условии выполнения равенств:

 (4)

 (5)

Из равенства (4) видно, что для обратимых процессов

 (6)

Так как dS является полным дифференциалом, то и величина  также есть полный дифференциал, т.е. множитель  является для количества теплоты dQ нормирующим. Величина  называется приведенной теплотой, ее значение можно определить экспериментально, что имеет большое практическое значение.

Зная элементарное изменение энтропии dS, можно без труда найти и конечное изменение этой величины для любого обратимого процесса. Именно:


 (7)

(рис. 1)

Если обратимый процесс характеризуется замкнутым циклом, то очевидно изменение энтропии и контурный интеграл от приведенной теплоты в этом случае равны нулю (рис.1):

 (8)

Для адиабатного обратимого процесса приведенная теплота равна нулю, а энтропия остается постоянной. Однако если процесс протекает необратимо, то энтропия, как было выяснено ранее, возрастает, т.е. для адиабатного необратимого процесса  (9).

Изменение энтропии при необратимых адиабатных процессах наводит на мысль использовать эту величину для характеристики необратимости любых процессов в макросистемах. Причем за меру необратимости удобно принять разность между dS и , которая равна нулю для обратимых процессов и больше нуля для необратимых.

Используя это соображение, можно утверждать, что все процессы в макросистемах протекают таким образом, что

 (10)

Если процесс круговой, то

 (11)

причем знак неравенства относится к неравновесным процессам, а равенство характеризует равновесные процессы.

Таким образом, энтропия действительно является такой функцией состояния, применение которой позволяет определить направленность протекания реальных процессов в макросистемах. Второе начало термодинамики выражает это утверждение в форме постулата.

5. Второе начало термодинамики

Второе начало термодинамики - один из принципов термодинамики, постулирует существование еще одной функции состояния - энтропии и определяет характер ее изменения в обратимых и необратимых процессах, утверждая, что изменение энтропии в макросистемах больше или равно изменению приведенной теплоты для неравновесных и равновесных процессов соответственно.

Математическим выражением второго начала термодинамики является соотношение между элементарным изменением энтропии и приведенной теплотой:

. (12)

Воспользуемся первым началом термодинамики и выразим в выражении (12) количество теплоты dQ через изменение внутренней энергии dE и элементарную работу dA.

Получим:

 (13)

Знак равенства в выражении (13) соответствует обратимым процессам, неравенство характеризует изменение энтропии в неравновесных процессах. Таким образом, для равновесных процессов из выражения (13) имеем равенство:

TdS = dE + dA, (14)

называемое основным уравнением термодинамики для равновесных процессов, и неравенство:

TdS>dE + dA, (15)

называемое основным неравенством термодинамики для неравновесных процессов.

Процессы в макросистемах могут протекать только при условии выполнения соотношений (12).

Существует несколько эквивалентных формулировок второго начала термодинамики, они отражают исторический ход развития знаний в этой области и подчеркивают различные стороны проблемы.

Формулировка Клаузиуса (1850): процесс, при котором в системе не происходит никаких изменений, кроме передачи теплоты от горячего тела к холодному, является необратимым; иначе говоря, теплота не может самопроизвольно перейти от более холодного тела к более горячему без каких-либо других изменений в системе.

Формулировка Томсона (Кельвина) (1851): процесс, при котором теплота переходит в работу, является необратимым; иначе говоря, невозможно преобразовать в работу всю теплоту, взятую от тела с однородной температурой, не производя никаких других изменений в состоянии системы.

Принцип невозможности создания вечного двигателя второго рода: невозможно создать периодически работающую машину, которая производила бы работу за счет поглощения теплоты одного теплового резервуара, не вызывая при этом никаких других изменений состояния системы. (Такую воображаемую машину принято называть вечным двигателем второго рода)

6. Обратимые и необратимые процессы

По второму началу термодинамики в природе возможны процессы, при которых превращение теплоты в работу связано с компенсацией, и невозможны процессы, при которых такое превращение не сопровождается компенсацией. Это приводит к делению всех процессов в замкнутой системе на обратимые и необратимые. Процесс перехода системы из состояния 1 в 2 называется обратимым, если возвращение этой системы в исходное состояние из 2 в 1 можно осуществить без каких бы то ни было изменений в окружающих внешних телах. Процесс же перехода системы из состояния 1 в 2 называется необратимым, если обратный переход системы из 2 в нельзя осуществить без изменений в окружающих телах. Очевидно, что всякий квазистатический процесс является обратимым. Действительно, при квазистатическом процессе состояние системы в каждый момент полностью определяется внешними параметрами и температурой, поэтому при равновесных изменениях этих параметров в обратном порядке система также в обратном порядке пройдет все состояния и придет в начальное состояние, не вызвав никакого изменения в окружающих телах.

При процессах с трением, как мы отмечали, работа может быть без компенсации превращена в теплоту; так как обратный переход системы из конечного состояния в начальное связан с переходом теплоты в работу, а это невозможно осуществить без изменения в окружающих телах, то, следовательно, процессы с трением необратимы. А так как всякий равновесный процесс обратим, то необратимый процесс с трением неравновесен.

Мерой необратимости процесса в замкнутой системе является изменение новой функции состояния - энтропии, существование которой у равновесной системы устанавливает первое положение второго начала о невозможности вечного двигателя второго рода. Однозначность этой функции состояния приводит к тому, что всякий необратимый процесс является неравновесным. Верно и обратное заключение: всякий неравновесный процесс необратим, если в дополнение ко второму началу осуществляется достижимость любого состояния неравновесно, когда оно достижимо из данного равновесно [вся современная практика подтверждает выполнение этого условия; однако противоположное условие выполняется не всегда]. Деление процессов на обратимые и необратимые относится лишь к процессам, испытываемым изолированной системой в целом; разделение же процессов на равновесные и неравновесные с этим не связано.

В качестве примеров необратимых процессов приведем следующие:

1. Процесс теплопередачи при конечной разности температур, необратим, так как обратный переход связан с отнятием определенного количества теплоты у холодного тела, превращением его без компенсации (некомпенсировано) в работу и затратой ее на увеличение энергии нагретого тела. Необратимость этого процесса видна также из того, что он не статичен.

Страницы: 1, 2


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  бесплатно рефераты скачать              бесплатно рефераты скачать

Новости

бесплатно рефераты скачать

© 2010.