бесплатно рефераты скачать
  RSS    

Меню

Быстрый поиск

бесплатно рефераты скачать

бесплатно рефераты скачатьДипломная работа: Механизмы имплантации в металлы и сплавы ионов азота с энергией 1-10 кэВ

Дипломная работа: Механизмы имплантации в металлы и сплавы ионов азота с энергией 1-10 кэВ

МЕХАНИЗМЫ ИМПЛАНТАЦИИ В МЕТАЛЛЫ И СПЛАВЫ ИОНОВ АЗОТА С ЭНЕРГИЕЙ 1-10 кэВ


ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ

1. Сравнительный анализ методов поверхностного модифицирования

2. Физические основы процесса ионной имплантации газов в металлы и сплавы

2.1 Основные характеристики метода ионной имплантации

2.2 Механизмы взаимодействия имплантируемых ионов с мишенью

2.3 Модель для расчета пробегов ионов в материале подложки

2.3.1 Ядерное торможение иона в материале

2.3.2 Электронное торможение иона в материале

2.4 Распределение примеси и дефектов в материале подложки в зависимости от энергии ионов азота

2.5 Остаточные концентрационные напряжения

3. Методики расчёта основных параметров физических процессов, происходящих при ионной имплантации

3.1 Методика расчета пробегов ионов методом Монте-Карло

3.2 Методика расчета распределения концентрации внедренных ионов по глубине материала

3.3 Методика расчёта остаточных концентрационных напряжений

4. Результаты расчёта параметров процессов взаимодействия имплантируемых ионов с материалом подложки

5. Экспериментальное оборудование

5.1 Установка для ионной имплантации азота в инструментальные материалы

5.2 Устройство системы электропитания имплантационной установки

5.3 Устройство датчика ионного тока

Заключение

Список Литературы

ПРИЛОЖЕНИЯ


ВВЕДЕНИЕ

Развитие машиностроения во многом определяется решением проблемы надежности подвижных сопряжении машин на основе подбора высокоэффективных материалов и методов их технологической обработки, выбора смазочных материалов, покрытий и т.д. При этом основная тенденция заключается в стремлении к повышению реализуемых скоростей, давлений, рабочих температур при одновременном росте надежности. Это невозможно без использования деталей, имеющих высокие физико-механические характеристики поверхностных слоев, так как в абсолютном большинстве случаев именно они ответственны за коррозионную и радиационную стойкость, износостойкость и другие эксплуатационные характеристики изделий. Детали и механизмы машин во многих случаях работают при высоких тепловых и механических нагрузках, в химически активных и абразивных средах. Поэтому необходимы высококачественные методы поверхностного модифицирования изделий, которые должны иметь следующие характеристики [1 – 4]:

·           экологическая безопасность;

·           минимальное изменение геометрических размеров изделия;

·           отсутствие коробления;

·           внедрение строго дозированных количеств легирующей примеси;

·           максимальный диапазон концентраций легирующей примеси;

·           чистые условия проведения процесса, исключающие загрязнение образцов нежелательными примесями;

·           простота управления процессом;

·           высокая воспроизводимость получаемых структур;

·           экономичность метода.

Для повышения эксплуатационных свойств материалов широко используются механические, термические, деформационно-термические и химико-термические методы упрочняющей обработки и легирования [5, 6, 9]. При использовании этих методов обработки материалов не всегда обеспечивается достаточно хорошая адгезия покрытий и упрочнение происходит не только на поверхности, но и в объёме изделия. В то же время для защиты деталей от изнашивания и коррозии достаточно поверхностного упрочнения материала. Основной же объем материала испытывает лишь сравнительно незначительные разрушающие воздействия нагрузок и химически активных сред и не требует упрочнения [3]. Ужесточение требований к структуре [7] и свойствам поверхностных слоев стимулировало развитие методов ионно-лучевой обработки [2, 18, 21], применение которых оказывается более целесообразным и экономически выгодным по сравнению с традиционными технологиями.

На сегодняшний день, одним из перспективных методов ионно-лучевой обработки является ионная имплантация [1, 2, 12] – внедрение ускоренных ионов в твердые тела. Ионная имплантация приобрела в последнее время большое значение не только как способ создания микроэлектронных устройств, но и как мощный универсальный метод упрочняющей обработки. Материалы, попадая в условия облучения высокоэнергетическими ионами, претерпевают значительные структурные превращения, которые обуславливают резкое изменение их свойств. Анализ литературы [1 – 3, 10 – 15] показывает, что использование газов в качестве обрабатывающего вещества, позволяет значительно воздействовать на эксплуатационные характеристики деталей, однако вопрос этот в полной мере не изучен [3]. Сравнение методов упрочняющей обработки помогает выявить основные преимущества метода ионной имплантации.


1. Сравнительный анализ методов поверхностного модифицирования

Основные виды традиционной термической обработки - отжиг, закалка, отпуск и старение – приводят к изменению не только поверхностных, но и объёмных свойств материалов. В то же время для защиты деталей от износа и коррозии на практике в ряде случаев необходимо и дополнительное поверхностное упрочнение материала [3]. Каждый из используемых с этой целью методов поверхностного модифицирования имеет свои преимущества, недостатки и ограничения. Поэтому на практике конкретный метод изменения поверхностных свойств выбирают, исходя из требований к характеристикам поверхностного слоя и экономичности. Наиболее распространенными группами методов поверхностного модифицирования являются:

-           поверхностного пластического деформирования;

-           химико-термической обработки;

-           ионной имплантации.

Повышение долговечности деталей машин методом поверхностного пластического деформирования [5, 6] широко используется для повышения сопротивляемости малоцикловой и многоцикловой усталости деталей. Поверхностное деформирование повышает плотность дислокации в упрочненном слое, измельчает субструктуру (величину блоков), а при обработке закаленных поверхностей уменьшает количество остаточного аустенита [16]. Существенным недостатком данного метода является высокая шероховатость поверхностей после обработки.

Химико-термическая обработка (ХТО) [18] заключается в сочетании термического и химического воздействий на металлы и сплавы для изменения химического состава структуры и свойств в поверхностных слоях. ХТО сводится к диффузионному насыщению поверхностного слоя стали неметаллами (С, N, Si и др.) или металлами (Сr, Аl и др.) в процессе выдержки при определенной температуре в активной среде: твёрдой, жидкой или газовой (плазма) [18, 19].

ХТО использует оба способа воздействия на образец одновременно в одном процессе — изменение структуры и химического состава поверхностного слоя. Таким комбинированным воздействием можно получить взаимоисключающие свойства образца, например, высокую твердость и вязкость одновременно. При этом высокая твердость или износостойкость присуща лишь тонкому поверхностному слою, в котором диффузионным способом был изменен химический состав, а вязкость детали обеспечивается свойствами сердцевины, которая создается химическим составом выбранной стали и способом ее термической обработки. Преимущество ХТО перед механическими, термическими и деформационно-термическими методами упрочняющей обработки, заключается в том, что происходит термическое упрочнение сердцевины и поверхностного слоя образца.

Характерной особенностью ХТО является необходимость нагрева заготовок, что связано с большими затратами энергии [3, 5, 6]. Основой всех процессов ХТО является диффузия, которая определяет длительное время обработки образцов. ХТО не позволяет получить концентрацию примесей выше предела растворимости диффундирующего элемента в обрабатываемом материале при температуре процесса [19]. Недостаточно интенсивное удаление продуктов реакции от поверхности или загрязнение поверхности окислами, пригарами, сажей и т.д. увеличивает сопротивление диффузионным процессам [20]. Поэтому перед ХТО необходимо подвергать образцы тщательной очистке [3, 7]. Все эти факторы, а также громоздкость оборудования приводят к существенным затратам. Чем больше зона химического соединения, тем больше изменение размера образцов; кроме того, в процессе обработки возможно коробление образцов, что нежелательно [17, 19]. ХТО часто связана с применением вредных для здоровья веществ, что вызывает необходимость дополнительных расходов на обеспечение экологической безопасности [3].

Ионные технологии поверхностного модифицирования являются на сегодняшний день наиболее прогрессивными [21, 25, 28, 30, 31]. Однако, ионные технологии требуют применения вакуумной техники и высоких ускоряющих напряжений. Очевидные преимущества этой группы методов включают легкость управления пучком заряженных частиц, возможность разгонять их до практически любой необходимой энергии и легко изменять вид используемых ионов, исключительную чистоту методов, воспроизводимость и контролируемость параметров обработки [21, 25, 31].

Используемые ионные технологии предназначены:

1)         для создания покрытий различного функционального назначения, в том числе износостойких;

2)         для поверхностного модифицирования за счет внедрения ионов в материал подложки без формирования покрытий.

В первом случае, при наиболее распространенном на практике ионно-плазменном напылении [23, 28, 29, 32], осаждение потока ионов ведется из плазмы на деталь, находящуюся под отрицательным потенциалом, значение которого достигает 103 В и выше. Между образцом и заземленными частями установки создается тлеющий разряд в инертном газе, обычно аргоне, находящемся под давлением в единицы Паскалей. Разряд обеспечивает очистку поверхности за счет распыления адсорбированных газов. После очистки материала подложки ионами аргона, производится ионная бомбардировка поверхности образцов ионами металла с целью внедрения ионов в поверхностный слой, создания переходной зоны между покрытием и основным материалом для повышения адгезии. Бомбардировка сопровождается нагревом поверхности образцов до температуры, которая не должна превышать температуру отпуска материала подложки. Метод позволяет получать пленки равномерной толщины и мелкодисперсной структуры с хорошей адгезией к подложке [31]. На практике получили широкое распространение покрытия из чистых металлов, нитридов и карбидов титана, циркония, хрома [27] и др. К недостаткам ионно-плазменного напыления можно отнести большое число параметров, активно влияющих на структуру и свойства получаемых покрытий, а также возможные перегрев поверхности выше температуры отпуска и разупрочнение сталей или, наоборот, недостаточный нагрев поверхности, приводящий к низкой адгезионной прочности покрытия [30].

Ионные методы формирования покрытий имеют общее свойство — результатом их применения является изменение размеров обрабатываемого изделия [3, 8, 10, 11]. Применение этих методов связано с необходимостью обеспечения высокой адгезии покрытия к материалу основы, для чего требуется поддержание определенного температурного диапазона осаждения [3, 33].

В связи с вышеизложенным, наиболее перспективным является другое направления развития ионных технологий, - поверхностного модифицирования за счет внедрения ионов газов в материал подложки без формирования покрытий, одна из разновидностей так называемой ионной имплантации [21, 33]. Суть метода заключается в поверхностной обработке изделия ионами с энергией, достаточной для их внедрения в поверхностные слои материала. Пороговая энергия, выше которой начинается внедрение ионов составляет примерно 3*10-18 Дж (рисунок 1.1). Глубина проникновения при энергии частиц 10-18 – 10-17 Дж не превышает нескольких межатомных расстояний (до 10 Å).

Обычно рассматривают три энергетических диапазона ионной имплантации: низкоэнергетическая (10-17 10-16 Дж), имплантация ионов средних энергий (10-15 10-14 Дж), высокоэнергетическая имплантация (10-13 Дж и выше) [21, 22].


Рисунок 1.1 – Энергетические диапазоны воздействий ионного потока на поверхность твёрдого тела.

Ряд исследователей отметили [3, 21, 24, 26] в качестве результата ионной имплантации значительное повышение эксплуатационных характеристик изделий, таких как механические свойства, износостойкость, коррозионная стойкость, циклическая прочность и т.д.

К преимуществам метода ионной имплантации следует отнести:

·           возможность получения практически любой комбинации матрица – легирующий элемент или легирующие элементы;

·           возможность проведения процесса комнатной температуре;

·           внедрение строго дозированных количеств легирующих примесей;

·           отсутствие зависимости предельной концентрации вводимой примеси от предела растворимости в материале подложки;

·           чистые условия проведения процесса, исключающие загрязнение образцов нежелательными примесями;

·           простота управления ионным пучком и возможность обработки локальных участков поверхности;

·           практически неизменность размеров обрабатываемой детали;

·           отсутствие коробления деталей, даже малой жёсткости;

·           высокая воспроизводимость получаемых структур;

·           обеспечение экономного легирования.

Недостатком реализации метода ионной имплантации является сложность и громоздкость оборудования и отсутствие его серийного производства.

Таким образом, из выше рассмотренных групп методов в силу неоспоримых преимуществ можно выделить методы поверхностного модифицирования за счет внедрения ионов в материал подложки без формирования покрытий – ионную имплантацию газов в поверхности металлов и сплавов.


2. Физические основы процесса ионной имплантации газов в металлы и сплавы

2.1 Основные характеристики метода ионной имплантации

Основными параметрами ионной имплантации являются:

-           энергия имплантируемых ионов, Дж;

-           доза облучения, м-2;

-           время облучения, с.

Физические процессы при имплантации ионов газов с энергией в диапазоне 1 – 10 кэВ ( Дж) недостаточно изучены [3]. Недостатками имплантации при более низких энергиях является то, что для существенного повышения эксплуатационных характеристик изделий требуется длительное время обработки (как правило, не менее 1 ч) [36, 40, 42]. Ионная имплантация при энергиях ионов выше 100 кэВ ( Дж) требует сложного и дорогостоящего оборудования [25].

Таким образом, осуществление ионной имплантации в диапазоне 1 – 10 кэВ ( Дж) позволяет, с одной стороны, уменьшить время обработки по сравнению с низкоэнергетической имплантацией, с другой стороны, значительно упростить оборудование по сравнению с высокоэнергетической имплантацией.

Технологические возможности ионной имплантации определяются верхним пределом концентрации имплантированных атомов и толщиной слоя, характеризующегося новыми свойствами. В процессе имплантации при торможении бомбардирующего иона в поверхностном слое материала создаются каскады смещенных атомов, при этом поверхностные атомы, получившие энергию, достаточную для преодоления сил поверхностной связи, выбиваются наружу и происходит распыление облучаемого материала. Вместе с атомами обрабатываемого материала происходит выбивание и атомов имплантируемой примеси. Вследствие этого процесс распыления накладывает ограничение на количество имплантируемых в материал атомов, что ведет к насыщению общей концентрации имплантированной примеси. В разделе 2.4 приведена расчётная зависимость для определения максимальной концентрации вводимой примеси.

Как показывают оценки и эксперименты, обусловленный распылением поверхности в процессе имплантации верхний предел имплантированной примеси ограничен 20...50 атомными %, что является вполне достаточным для получения сплавов и управления свойствами поверхности. Реально это соответствует диапазону доз 1021... 1022 м-2 [21]. На практике доза облучения, как правило, колеблется от 1019 до 1022 м-2 [8, 21, 25]. При дозах меньше 1019 м-2 повышение эксплуатационных характеристик изделий незначительно [25]. При увеличении дозы имплантации выше 1022 м-2 улучшение эксплуатационных характеристик изделий существенно замедляется, и начинают проявляться различные нежелательные эффекты, например, радиационное распухание [20, 41], которые приводят к разрушению поверхностного слоя обрабатываемого материала.

Наиболее просто процесс ионной имплантации газов в металлы и сплавы может быть реализован с использованием схемы, приведенной на рисунке 2.1.

В результате термоэлектронной эмиссии вольфрамовой проволоки 1 создаётся поток электронов, который проходит через промежуточный анод 2 и фокусируется при прохождении анодной вставки 3. Магнитное поле, создаваемое соленоидом 4, также обеспечивает фокусировку потока электронов. Сталкиваясь с атомами поступающего в камеру 5 газа (азота), электроны ионизируют его.


Рисунок 2.1 – Схема ионной имплантации газов в поверхностные слои металлов и сплавов в вакуумной камере. 1 – катод; 2 – промежуточный анод; 3 анодная вставка; 4 – соленоид; 5 – камера, в которую подаётся газ; 6 – анод; 7 экстрактор; 8 – фокусирующий электрод; 9 – подложка (легируемый материал); 10 ионный пучок.

Ионы газа вытягиваются и ускоряются под действием приложенного между экстрактором 7 и анодом 6 высокого напряжения (10 – 50 кВ). Ионный поток 10 фокусируется, проходя через фокусирующий электрод 8, и попадает на поверхность образца 9.

При прохождении через отверстие в экстракторе ионы обладают энергией, достаточной для внедрения в поверхностные слои образца.

2.2 Механизмы взаимодействия имплантируемых ионов с мишенью

Из литературных источников [8, 21, 26, 36, 37, 48, 49], известно, что механические свойства обрабатываемой поверхности после имплантации ионов зависят, прежде всего, от концентрации внедренных ионов и образующихся в процессе имплантации радиационных дефектов. Для расчета пробегов и концентраций ионов при имплантации применяется теория Линхардта-Шарфа-Шиотта (ЛШШ), изложенная в работах [21, 22, 46 – 48]. Существенное влияние на распределение примеси по глубине поверхностного слоя изделия оказывает радиационно-стимулированная диффузия. На диффузионные процессы существенное влияние оказывает температура нагрева поверхностного слоя образца. Однако в случае ионов газов с энергией в диапазоне 1 – 10 кэВ ( Дж) нагрев будет незначительным для расчета окончательного распределения примеси можно пренебречь изменением температуры в зоне воздействия, а значит и её влиянием на диффузионные процессы. На концентрацию примеси (а значит и на остаточные концентрационные напряжения) влияет распыление поверхности образца при имплантации. Но для ионов газов низких энергий этот процесс можно не учитывать [3].

Страницы: 1, 2, 3, 4, 5, 6


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  бесплатно рефераты скачать              бесплатно рефераты скачать

Новости

бесплатно рефераты скачать

© 2010.