бесплатно рефераты скачать
  RSS    

Меню

Быстрый поиск

бесплатно рефераты скачать

бесплатно рефераты скачатьДипломная работа: Способы производства и методы модификации резиновой смеси для производства сальника реактивной штанги с целью уменьшения себестоимости и увеличения производительности

Дипломная работа: Способы производства и методы модификации резиновой смеси для производства сальника реактивной штанги с целью уменьшения себестоимости и увеличения производительности

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

«ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Специальность

кафедра естественных наук

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

На тему «Способы производства и методы модификации резиновой смеси для производства сальника реактивной штанги с целью уменьшения себестоимости и увеличения производительности»

2009


Введение

Резина представляет собой сложную многокомпонентную систему, в состав которой помимо каучука входит до 10–15, а иногда и более разнообразных веществ (ингредиентов). Свои ценные технические свойства резина приобретает в завершающем цикле ее производства – в процессе вулканизации. [1]

Специфические свойства резины – высокая эластичность, способность к большим обратимым деформациям при статических и динамических нагружениях, стойкость к действию активных химических веществ, малая водо- и газопроницаемость, хорошие диэлектрические и другие свойства – обусловили ее широкое использование в различных областях техники. [2]

Производство резиновых изделий – крупная отрасль промышленности, продукция которой используется во всех областях народного хозяйства. Основным потребителем резиновых изделий (шин, тормозных устройств, губчатых изделий и разнообразных деталей) является современный транспорт – автомобильный, воздушный, железнодорожный. Как ценнейший изоляционный материал, сочетающий диэлектрические свойства с эластичностью и стойкостью к различным атмосферным воздействиям, резина широко применяется в электротехнической промышленности (при производстве кабеля, различных электрических приборов и т.д.).

Широко применяются в народном хозяйстве разнообразные резинотехнические изделия: транспортерные конвейерные ленты для погрузочно-разгрузочных работ, гибкие резиновые шланги и ремни для передачи вращательного движения от вала двигателя на валы машин и механизмов, уплотнительные детали (сальники, прокладки), муфты, амортизаторы и другие. Достаточно сказать, что в конструкцию современного автомобиля входят сотни резиновых, резинометаллических и резинотекстильных деталей.

Основным сырьем для изготовления резины являются каучуки – синтетические и натуральный. Технические свойства резин зависят главным образом от типа каучука, из которого они изготовлены.

Вследствие широкого разнообразия условий эксплуатации резиновых изделий для их производства применяются каучуки разных типов. Так, масло – бензостойкие резиновые изделия готовят из синтетических бутадиен-нитрильных или хлоропреновых каучуков. Для производства изделий, подвергающихся действию высоких температур, применяются теплостойкие силоксановые каучуки и фторсодержащие полимеры. Высокое сопротивление динамическим деформациям и износу автомобильных шин достигается применением натурального и синтетических стереорегулярных изопреновых и бутадиеновых каучуков или их комбинаций, а также бутадиен-стирольного каучука. Подобных примеров очень много.

Однако свойства резиновых изделий зависят не только от типа каучука, но и от ингредиентов, применяемых для изготовления резины (вулканизующие вещества, ускорители и активаторы процесса вулканизации, наполнители, пластификаторы, противостарители, специальные вещества).

В настоящее время РТИ выпускают около 50 специализированных предприятий, [3] при этом новые заводы, введенные в строй в последнее десятилетие (Ангрен, Балаково, Барнаул, Караганда и др.), использующих современную технологию и оборудование.

В производстве РТИ широкое применение получили комплектующие детали. Наиболее ответственными комплектующими деталями, имеющими точные размеры и гладкую внешнюю поверхность, являются формовые детали. Среди них большое значение имеют сальники резиновые и резинометаллические.

Сальник[4] – уплотнение, герметизирующее место соприкосновения подвижной и неподвижной частей машины. Они предназначены для предотвращения перетекания смазки из одного пространства в другое, для предотвращения утечки смазки из механизмов, для защиты механизмов от проникновения внутрь их пыли и грязи извне, в местах выхода наружу валов и осей, для ограничения хода мостов вверх и смягчения их ударов о раму, для защиты от проникновения в них извне пыли и грязи на лонжеронах. Толкающее усилие и реактивные моменты передаются на раму шестью реактивными штангами.

Сальники в автомобилях эксплуатируются в среде масел, вызывающих повышенное набухание резины, и в среде воды. Температура при эксплуатации сальников может быть: от –30 до +100 °С в среде масел и от +4 до 4–100 °С в среде воды. Избыточное давление до 0,5–105Па; окружная скорость – не более 10 м/с.

По конфигурации, размерам, допускам и другим требованиям сальники должны соответствовать чертежам завода-заказчика. Рабочая кромка сальника должна быть острой и ровной; заусенцы и фаски не допускаются. Кольцо жесткости должно быть плотно привулканизовано к резине сальника. Каждый сальник имеет определенный номер, например, №51–170 1210А – сальник задней крышки коробки передач автомобиля ГАЗ-51; №12–2401060Б – сальник внутреннего подшипника заднего моста для легкового автомобиля «Волга» и т.д. [5]

В настоящее время существует большое разнообразие составов для получения сальников. Однако применение новых моделей автомобилей неизбежно приводит и к модификации резиновых смесей, и к усовершенствованию технологического процесса получения данных комплектующих деталей.


1. Технологический раздел

1.1 Обзор литературы с обоснованием выбора технического решения

1.1.1Сырье и материалы для производства сальника реактивной штанги

Широкие области применения комплектующих РТИ (в частности, сальников) предполагают использование большого ассортимента резиновых смесей, характеризующихся разнообразием технологических свойств. Для обеспечения этих свойств важен правильный выбор каучуковой основы. Для изготовления разнообразных уплотнителей (сальников) используют в основном синтетические каучуки, такие как бутадиен-нитрильный каучук (СКН), наирит, бутилкаучук, фторкаучук (СКФ), изопреновые каучуки (СКИ-3), этилпропиленовые (СКЭП и СКЭПТ), бутадиеновые (СКД), акриловые каучуки и т.д.

Изопреновый каучук близок по свойствам с НК, но имеет более низкую когезионную прочность и клейкость резиновых смесей на их основе. В то же время имеет более высокую текучесть, что облегчает их переработку формованием и литьем под давлением. [5]

Бутадиеновый каучук стереорегулярный. Обладают высокой морозостойкостью, сопротивлением истиранию. Резиновые смеси на их основе плохо перерабатываются экструзией и каландрованием. Для улучшения этих свойств добавляют НК и изопреновый каучук. [5]

Бутадиеновые и бутадиенметастирольные каучуки вырабатывают в широком ассортименте и большом объеме. Это объясняется сравнительно простой технологией, доступностью исходных мономеров (бутадиена и стирола) и высокими физико-механическими свойствами этих каучуков. Резины на их основе имеют высокое сопротивление истиранию (60–69 пм2 / Дж в стандартных смесях). [5]

Бутадиен-нитрильный каучук. Основной тип маслобензостойкого каучука, широко применяемого при изготовлении очень большого ассортимента РТИ. [5]

Акриловые каучуки имеют высокую тепло и маслостойкость. По теплостойкости они уступают только силоксановым и фторкаучукам. Предельная рабочая температура для них 200о С. Это один из синтетических каучуков, способных противостоять воздействию серу содержащих масел и смазок, т.е. удовлетворять требованиям к уплотнительным материалам в автомобилестроении. Недостаток резин из акриловых каучуков низкая эластичность и невысокие прочностные свойства. [5]

Хлоропреновый каучук – наирит. Наличие атомов хлора (около 40% по массе) придает каучуку ряд особых свойств (масло-, бензо-, озоностойкость, не горючесть, повышенную теплостойкость), определяющих специфику его применения. [5,6]

Бромбутил каучук. Обладает повышенной стойкостью вулканизации и способностью совмещаться с натуральными и синтетическими каучуками. [1,5]

Этиленпропиленовые каучуки. Обладают целым комплексом ценных свойств (тепло-, свето- и озоностойкостью), позволяющих использовать их в производстве резин как общего, так и специального назначения. [5]

Фторкаучуки – сополимеры на основе фторолефинов. Атом фтора, входящий в состав молекулы полимера, придает ему особо высокую термо- и химическую стойкость. Высокая теплостойкость фторкаучуков в сочетании с достаточно хорошей механической прочностью, сопротивлением действию агрессивных сред – масел, органических жидкостей, сильных окислителей. Из фторкаучуков изготавливают уплотнительные и герметизирующие детали, предназначенные для работы в маслах и топливах при 200 С и выше. [5]

Жидкие каучуки. Низкомолекулярные полимеры (мол. масса 500–10000), имеют консистенцию более или менее вязких жидкостей. Применение жидких каучуков открывает возможность перейти в производстве РТИ к более прогрессивной литьевой технологии.

Для получения РТИ в качестве каучуковой основы можно использовать регенерат. [5]

Регенерат. Продукт переработки старых резиновых изделий и вулканизованных отходов производства. Регенерат пластинчатый материал, способный смешиваться с каучуками и ингредиентами, подвергаться технологической обработке и вновь вулканизоваться при введении в него вулканизующих веществ. Регенерат применяют для полной или частичной замены каучука при производстве РТИ. Введение его в резиновые смеси позволяет экономить большие количества каучука и значительно уменьшить себестоимость резиновых изделий. Из регенерата без добавок изготавливают в основном только неответственные изделия: ковры, бытовые дорожки, полутвердые трубки для изоляции, садовые рукава и т.д. (4; 5; 6; 9; 20; 24; 25; 26).

Для получения резинотехнических изделий применяют в основном, не отдельно каучуки, а в составе резиновой смеси, что позволяет улучшить качество полученных материалов.

Введение ингредиентов и вулканизация существенно изменяют свойства каучука.

Основные компоненты резиновых смесей в зависимости от их назначения делят на следующие группы: [1]

каучуки, каучукоподобные полимеры и регенерат;

вулканизующие вещества;

ускорители вулканизации;

активаторы вулканизации;

противостаригели;

пластификаторы (мягчители);

наполнители активные, т.е. увеличивающие прочность вул-канизатов, и неактивные;

компоненты специального назначения, в которые входят; порообразующие вещества;

вещества, снижающие активность ускорителей в подготовительных процессах;

материалы, вводимые в смесь для придания запаха; абразивные вещества, которые добавляют в резиновые емеси для получения шлифовальных материалов;

противомягчители;

краски и красители;

антипирены – вещества, снижающие воспламеняемость и горючесть резины;

фунгициды для тропических резин;

опудривающие материалы (графит, тальк, слюда, стеарат, цинка).

Кроме того, применяются вещества, которые облегчают обработку или изготовление резиновых смесей, – диспергаторы ингредиентов, активаторы пластикации каучука, вещества, повышающие клейкость смесей, а также пропиточные материалы, повышающие адгезию резиновых смесей к тканям.

Большинство ингредиентов изменяет свойства не только вулканизатов, но и резиновых смесей и влияет таким образом на поведение их в производственных процессах. [4; 5; 9; 12]

Вулканизирующие вещества это компоненты резиновых смесей, осуществляющие в процессе вулканизации сшивание макромолекул каучука в пространственную структуру. К ним относятся: сера, некоторые органические полисульфиды, органические перекиси, хиноны и их производные, диазосоединения, оксиды некоторых металлов (цинка, свинца, кадмия, магния), различные смолы и др. [4]

Они вводятся для получения резин с заданным комплексом свойств и обеспечивают определенную степень поперечного сшивания каучуков.

Вулканизация каучука одной серой – весьма длительный процесс; получаемые вулканизаты обладают невысокой механической прочностью вследствие того, что одновременно с вулканизацией протекают процессы окисления каучука.

Еще со времени открытия вулканизации ставились опыты по сокращению продолжительности этого процесса путем введения в смеси различных химических веществ – ускорителей вулканизации.

Ускорителями вулканизации обычно называют химические соединения, которые вводят в смесь каучука с другими ингредиентами для ускорения процесса вулканизации и улучшения физико-механических свойств вулканизованной резины. [4,5]

Некоторые ускорители являются также вулканизующими веществами. Так, например, тиурамы и полисульфидные ускорители при температуре вулканизации могут вулканизовать каучук без применения элементарной серы. Активность большинства ускорителей повышается при введении так называемых активаторов, например окиси цинка, стеарина и др.

Вещества, являющиеся ускорителями вулканизации для одного каучука, могут полностью утратить свойства ускорителей и играть иную роль в смесях с другим каучуком. Например, дибензтиа-зилдисульфид, являясь ускорителем вулканизации натурального и бутадиен-стирольных каучуков, служит замедлителем подвулканизации и пластификатором для наирита.

Ускорители вулканизации могут защищать резины от старения и оказывать другие действия, подробно описанные ниже. В начале развития резиновой промышленности широкое применение в качестве ускорителей вулканизации получили окислы и гидроокиси щелочноземельных металлов, а также некоторые амфотерные окислы. К таким ускорителям, названным неорганическими, относятся окиси магния и свинца, гидроокись кальция, а также окись цинка. После открытия органических ускорителей эти окислы начали играть роль активаторов вулканизации. Наиболее широкое применение получила окись цинка, а в отдельных случаях окись кадмия, висмута и др. [4,5]

Установлено [5,7], что окислы металлов участвуют в образовании поперечных связей между молекулярными цепями каучука, а также влияют на характер образующихся при вулканизации пространственных структур. Так, в работах Б.А. Догадкина с сотр. показано, что в резинах из натрийбутадиенового каучука в присутствии активаторов уменьшается среднее число атомов серы, приходящихся на одну поперечную связь, вследствие чего повышается термическая стойкость вулканизатов.

При вулканизации тиурамами в отсутствие окиси цинка они распадаются на дитиокарбаминовую кислоту и сероуглерод [14]:

В присутствии же окиси цинка образуется цинковая соль дитиокарбаминовой кислоты

которая выделяет одну атомарную серу с образованием моносульфидных связей С–S; несомненно, только этим можно объяснить широкое плато вулканизации и отсутствие реверсии вулканизации при длительном нагревании вулканизатов такой структуры.

При взаимодействии органических ускорителей с активаторами вулканизации в интервале температур, соответствующих процессу вулканизации каучуков (140–150° С), образуются координационные соединения. При этом стеариновая и бензойная кислоты являются катализаторами, способствующими образованию цинковых солей ускорителей и комплексных (ониевых) соединений. Для наиболее эффективного использования ускорителей вулканизации требуется одновременное применение активаторов. (4; 5; 9; 20; 24)

Активаторы значительно повышают эффективность действия вулканизации, и относительно небольшие добавки их к смеси приводят к значительному повышению степени вулканизации. Практически во многих случаях в отсутствии активаторов вулканизация не происходит. Основным активатором, который применяется в технологии резины, является окись цинка, цинковые белила, стеариновая кислота.

При добавлении белил цинковых жесткость смесей значительно увеличивается [5], что предупреждает их деформацию при вулканизации открытым обогревом; кроме того, повышается их теплопроводность, что очень важно для вулканизации горячим воздухом.

Добавление стеариновой кислоты обуславливает повышение модуля, прочности на разрыв, твердости и эластичности вулканизатов. В присутствии активаторов не только существенно улучшаются физико-механические свойства, но в некоторых случаях значительно повышается скорость вулканизации. (4; 5; 9; 25; 26)

Для замедления процесса старения, основной причиной которого является окисление каучуков, вводятся противостарители: нафтам-2, альнафтацетонанил-Р, диафен ФП, хинол ЭД. (4; 5; 9; 18)

В настоящее время существует много стабилизаторов. В зависимости от назначения их принято делить в основном на фотостабилизаторы, антиоксиданты и термостабилизаторы. Однако такое деление носит условный характер, так как многие из них могут одновременно выполнять различные функции. В синтетические каучуки противостарители вводят в процессе их изготовления.

Несмотря на то, что старение каучука вызывается главным образом действием кислорода, единого универсального противостарителя нет. Это объясняется тем, что ускорение старения, связанкое с повышением активности кислорода, может быть предотвращено введением различных по химическому строению защитных веществ. В зависимости от назначения резиновых изделий, условий их эксплуатации (динамическая работа, действие света, тепла, озона), наличия в вулканизатах меди, марганца и других тяжелых металлов применяются различные противостарители или их смеси.

В большинстве случаев дозировка противостарителей составляет 1–2%. Только в смеси для изделий, работающих при высокой температуре (например, для варочных камер), вводят более 3,5% противостарителя. [4]

Получение полимерных материалов с определенным комплексом свойств связанно не только с синтезом полимеров различного химического строения. Одним из важнейших методов модификации полимеров является пластификация. Суть ее состоит в изменение свойств полимеров путем введения в них добавок низкомолекулярных веществ-пластификаторов, изменяющих вязкость системы, гибкость молекул, подвижность надмолекулярных структур. Пластификатор вводят в полимер с целью повышения их эластичности или пластичности при переработке и эксплуатации. [4,5]

На заводах производства РТИ используются разнообразные пластификаторы, например эфир ЛЗ-7, церезин и мягчительное масло и др. В связи с понижением вязкости при введении пластификатора уменьшаются затраты энергии при смешении каучуков с ингредиентами и при формовании резиновых смесей, снижается температура переработки и, следовательно, уменьшается опасность преждевременной вулканизации. Кроме того, уменьшение вязкости резиновой смеси позволяет увеличивать содержание в ней наполнителей и, таким образом, снижает ее стоимость. [4; 5; 9; 14; 27]

При введении пластификаторов кроме увеличения пластичности уменьшается расход энергии, продолжительность изготовления резиновых смесей и теплообразование в процессе смешения; облегчается диспергирование ингредиентов смеси в каучуке, формование на каландрах и червячных машинах и заполнение сложных форм; снижается температура размягчения смеси в начальный.) период вулканизации и усадка резиновых смесей при различный способах формования изделий.

Пластификаторы (называемые иногда мягчителями) оказывают влияние и на процессы вулканизации смесей, и на старение вулканизатов.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  бесплатно рефераты скачать              бесплатно рефераты скачать

Новости

бесплатно рефераты скачать

© 2010.