бесплатно рефераты скачать
  RSS    

Меню

Быстрый поиск

бесплатно рефераты скачать

бесплатно рефераты скачатьДипломная работа: Химия и технология штатных бризантных взрывчатых веществ

Дипломная работа: Химия и технология штатных бризантных взрывчатых веществ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Факультет естествознания, географии и туризма

Кафедра химии и хим. технологии неорганических веществ

ДИПЛОМНАЯ РАБОТА

на тему:

«Химия и технология штатных бризантных взрывчатых веществ»

Санкт-Петербург 2009


Содержание

Введение

1. Штатные бризантные взрывчатые вещества

1.1 Тротил: производство в военное время и сегодня, свойства тротила

1.2 ТЭН (тетранитрат пентаэритрита): химизм получения и области применения, свойства, технология производства

1.3 Гексоген: свойства и технология производства

1.4 Октоген: свойства, способы получения

2. Методическая разработка факультативных занятий по химии

Заключение

Литература

Приложение


Введение

Химические соединения или их смеси, которые содержат в молекулах определенный запас химической энергии, называют энергонасыщенными веществами. Эта энергия под действием внешнего импульса в результате протекания химических реакций освобождается, превращаясь в тепловую, световую, механическую, электрическую и т.д.

Наиболее распространенные типы энергонасыщенных веществ – это взрывчатые вещества, пороха и компоненты твердых ракетных топлив, пиротехнические составы. В данной дипломной работе речь пойдет о штатных бризантных взрывчатых веществах.

Преобразование химической энергии в другие виды энергии во взрывчатых веществах осуществляется в результате чрезвычайно быстро протекающей реакции химического взрыва. Энергия взрыва может быть использована в самых разных целях.

Основная особенность взрывчатых веществ, которая и обусловила появление термина «энергонасыщенные вещества» – это экзотермичность реакций взрыва, сопровождающихся выделением большого количества теплоты, которое разогревает газообразные продукты превращения этих веществ до высокой температуры (3000–5000 К). Чем больше количество теплоты выделяется в результате взрыва единицы массы вещества, тем, как правило, более эффективно действие взрывчатого вещества, т.е. количество теплоты, выделяемое при химической реакции – основной критерий работоспособности.

Взрывчатые вещества обычно делят на бризантные и инициирующие взрывчатые вещества. Бризантные взрывчатые вещества нашли широкое применение в технике и народном хозяйстве в качестве мощных и компактных источников механической энергии. Примером бризантных взрывчатых веществ являются такие производимые промышленностью соединения, как тротил, гексоген, ТЭН, октоген.

Механическая работа, являющаяся основной целью взрыва, совершается за счет той потенциальной энергии, которой обладает заряд взрывчатого вещества.

Ввиду относительно высокой стоимости взрыва важно, чтобы его энергия была использована наиболее эффективно. Говоря о работоспособности зарядов взрывчатых веществ, обычно различают бризантное (дробящее) и фугасное (общее) механическое действие взрыва. Бризантное действие проявляется в непосредственной близости от заряда взрывчатого вещества. На бризантные формы работы затрачивается незначительная часть энергии взрыва.

К недостаткам взрывчатых веществ следует отнести недостаточно высокие взрывчатые характеристики тротила и довольно высокую опасность в обращении с остальными тремя штатными взрывчатыми веществами, а также плохую прессуемость последних.

Взрывчатые вещества как высококонцентрированный и экономичный источник энергии широко применяют в различных отраслях народного хозяйства. Около 90% всего объема руд цветных и черных металлов в нашей стране добывают взрывным способом. Массовые взрывы широко используются при вскрытии рудных тел, угольных пластов и месторождений других полезных ископаемых, в строительстве, при сооружении плотин и насыпей, прокладке авто- и железнодорожных магистралей, водных каналов, спрямлении русел рек, прокладке нефте- и газопроводов, особенно в труднодоступной для техники местности, при проведении тоннелей, прокладке шахтных стволов и других горных выработок.

Взрывчатые вещества также широко применяют при взрывных способах обработки в машиностроении и металлургии – штамповке, сварке, изготовлении биметаллических листов, упрочнении деталей машин, резании металлов; при перфорации нефтяных скважин, при тушении лесных пожаров, уплотнении грунтов, в гидромелиоративном строительстве, расчистке и выравнивании местности и для других технических нужд.

Продолжается поиск и исследование дальнейших путей использования и управления энергией взрыва. В настоящее время применяется взрывной способ производства некоторых особенно ценных минералов и искусственных материалов, ускоряются отдельные химические процессы с использованием сверхвысоких давлений взрыва, проводятся работы по искусственному дождеванию, внедряются методы взрывного бурения.

Целью данной работы является: на основе доступных литературных источников произвести обзор свойств и технологий получения штатных бризантных взрывчатых веществ; разработать факультативное занятие по теме «Бризантные взрывчатые вещества» для учащихся старших классов средней общеобразовательной школы.


1. Штатные бризантные взрывчатые вещества

1.1 Тротил: производство в военное время и сегодня, свойства тротила

Тротил (тринитротолуол) широко используется самостоятельно и как компонент взрывчатых составов в военном деле для снаряжения боеприпасов, в мирных целях как промышленное взрывчатое вещество. Преимущество тротила перед другими индивидуальными ВВ обусловлено благоприятным сочетанием физико-химических, взрывчатых и технологических свойств.

Первые промышленные установки производства тротила в России были созданы в 1909 году на Охтинском, в 1912 году на Самарском (ныне ОАО «Полимер»), в 1922 году на Нижегородском (ныне ГУП «Завод им. Я.М. Свердлова») заводах по технологии фирмы «Карбомит» (Германия). В дальнейшем производство тротила развивалось на базе отечественных разработок и характеризовалось весьма высокими темпами, что позволило увеличить объем его выпуска в послевоенные годы в 11 раз [5, 113].

Широкое применение тротила в промышленности является характерной особенностью России. При этом доля тротила, используемого для снаряжения боеприпасов, в общем объеме производства в послевоенные годы не превышала 10%.

Первые промышленные установки производства тротила в России были весьма несовершенны. Получение тротила осуществлялось нитрованием толуола в три стадии с последующей очисткой тротила-сырца перекристаллизацией из этилового спирта. Периодический способ на всех технологических операциях, отсутствие кислотооборота на стадии нитрования, ручной межфазный транспорт приводили к повышенным трудовым и материальным затратам. В 1932–1933 годах был разработан и внедрен горячий кислотооборот, изменен порядок дозировки компонентов – применена дозировка нитруемого соединения к нитрующей смеси. Несмотря на значительное улучшение технико-экономических показателей периодический процесс не удовлетворял требованиям бурно развивающейся

индустриализации страны, в том числе требованиям промышленности боеприпасов. Поэтому уже в 1936 году на Чапаевском химзаводе был освоен непрерывный четырехфазный противоточно-прямоточный способ нитрации толуола до тротила-сырца с горячим кислотооборотом.

В 1940 году в промышленном масштабе на заводе им. Я.М. Свердлова был освоен другой вариант непрерывного процесса – многофазный противоточный способ нитрации, созданный заводскими инженерами А.Т. Васильевым, Н.П. Кошелевым, Г.М. Васильевым.

Переход на сульфитную очистку вместо кристаллизации из этилового спирта был осуществлен в 1933–1937 годах по предложению А.Т. Васильева, П.И. Канавца, И.А. Мазеля. Главные преимущества использования сульфита натрия – это повышение безопасности за счет исключения применения легковоспламеняющегося растворителя – этилового спирта, увеличение выхода очищенного тротила, то есть снижение расхода сырья и улучшение технико-экономических показателей. Процесс очистки тротила сульфитом натрия длительное время оставался периодическим, хотя к этому времени был осуществлен перевод операций сушки и чешуирования на непрерывный режим.

Новый этап в развитии технологии и производства тротила начался в послевоенный период (1945–1960), когда значительно увеличилась потребность в промышленных взрывчатых веществах для добывающих отраслей промышленности. Наиболее значительными из результатов исследований, решивших выбор технологии в пользу противоточного метода, явились две разработки – безолеумный процесс (П.И. Канавец, Т.Н. Серебрянникова, В.В. Гисин, НИИ-6; А.Т. Васильев, Г.М. Васильев, завод им. Я.М. Свердлова), освоенный в 1948 году и изобретение в 1947 году конического шнек-подъемника и нитраторов с совмещенными или выносными сепараторами, расположенными выше нитраторов (А.И. Борисов, В.М. Елецкий).

В дальнейшем совершенствование технологических линий с одновременным повышением их производительности шло в направлении использования более крепких кислотных смесей вплоть до 100%-ной серной кислоты, а также за счет распределения дозировки серного компонента в конец и в середину системы. Так завершился определенный этап создания высокопроизводительных безопасных технологических линий нитрования толуола до тротила, превосходящих для своего времени по техническому уровню известные западные технологии – периодические в Германии, США, непрерывные, но с низкой производительностью и сложным аппаратурным оформлением в Англии, Испании, Италии.

Производство тротила

Процесс получения тротила складывается из следующих стадий:

1) Нитрование толуола до тротила;

2) водная промывка тротила от кислоты;

3) чистка тротила от примесей;

4) сушка тротила.

Нитрование толуола до тротила

Изучение реакции нитрования толуола до мононитротолуола было направлено главным образом на снижение выхода мета-нитротолуола, чтобы в последующем получить тротил с меньшим содержанием примесей. Были исследованы также и некоторые характеристики нитрования толуола в гетерогенных условиях: растворимость, распределение компонентов между слоями, влияние перемешивания на скорость реакции и т.д.

Коэффициент распределения азотной кислоты между толуольным и сернокислотным слоями (при 5°С и концентрации H2S04 70%) равен 0,066, при более низкой концентрации H2S04 он равен нулю. Это указывает на то, что азотная кислота при гетерогенном нитровании толуола лишь в незначительной степени переходит в органический слой и поэтому доля протекающей там реакции практически равна нулю.

Низкая растворимость толуола в серной кислоте умеренных концентраций, отсутствие перехода азотной кислоты в органический слой, а также резкая зависимость скорости реакции нитрования толуола от интенсивности перемешивания и объемной доли минерального слоя позволяют предположить, что реакция нитрования толуола в гетерогенных условиях протекает возле поверхности раздела слоев. Скорость в этом случае будет определяться концентрацией реагирующих компонентов на этой поверхности, которая в свою очередь определяется скоростью диффузии реагирующих компонентов из глубины слоя к поверхности раздела и скоростью отхода от нее продуктов реакции.

Указанные процессы, а также состояние реагирующих компонентов, зависят от температуры, концентрации кислотной смеси и интенсивности перемешивания.

Производство тротила усложняется в первой ступени нитрования нежелательным образованием мета-нитротолуола. Образование 5–6% этого изомера в дальнейшем приводит к образованию 5–6% несимметричных тринитротолуолов, загрязняющих тротил.

Выход мета-нитротолуола может быть уменьшен:

1) При снижении температуры нитрования;

2) при введении в кислотную смесь нитрата натрия

Установлены следующие закономерности процесса нитрования толуола до мононитротолуола в гетерогенных условиях:

а)      скорость процесса, по-видимому, определяется скоростью диффузии компонентов к зоне реакции, так как нитрование идет главным образом на поверхности раздела слоев [4, с. 212];

б)      скорость нитрования в гетерогенных условиях сравнительно мало зависит от температуры, в то же время с понижением температуры снижается выход мета-нитротолуола. Следовательно, целесообразно проведение нитрования толуола при низкой температуре. Это будет способствовать снижению выхода мета-нитротолуола и сравнительно мало повлияет на скорость нитрования;

в)      целесообразно применение наиболее интенсивного перемешивания с целью увеличения скорости реакции, особенно при низкотемпературном режиме нитрования. Это приведет к увеличению производительности системы.

Нитрование мононитротолуола до динитротолола

Исследованием реакции нитрования мононитротолуола до динитротолуола занимались мало, что до некоторой степени понятно, так как в производстве тротила эта стадия является средним звеном между первой и третьей. Из первой стадии туда поступает мононитротолуол, а из третьей серная кислота в виде отработанной кислоты. Нитрование мононитротолуола до динитротолуола обычно проводят, используя всю отработанную кислоту от третьей стадии и крепкую или слабую азотную кислоту. Больших затруднений в производстве эта стадия не составляет.

Скорость реакции нитрования мононитротолуола в гетерогенных условиях, также как и толуола, зависит от интенсивности перемешивания (величины поверхности раздела слоев). Однако эта зависимость менее резкая, чем для толуола. Зависимость скорости нитрования мононитротолуола в гетерогенных условиях от интенсивности перемешивания указывает на то, что нитрование в значительной степени протекает возле поверхности раздела слоев. Наряду с этим идет нитрование и в минеральном слое, где концентрация мононитротолуола в условиях процесса, достаточно высокая.

Нитрование динитротолуола до тринитротолуола

Нитрование динитротолуола является наиболее медленной стадией процесса получения тротила вследствие резкого торможения скорости вступления третьей нитрогруппы двумя другими нитрогруппами, уже имеющимися в бензольном ядре. Это наглядно видно на примере нитрования динитротолуола концентрированной азотной кислотой, которая взаимодействует с ним с незначительной скоростью. Повышение температуры мало изменяет эту скорость, а лишь способствует развитию сильных окислительных процессов. Серно-азотные смеси, особенно концентрированные, нитруют динитротолуол с большей скоростью, чем чистая азотная кислота.

В производстве тротила нитрование динитротолуола, так же как толуола и мононитротолуола, осуществляется в гетерогенных условиях. Скорость процесса в этом случае складывается из скоростей процессов диффузии реагирующих компонентов из одного слоя в другой и затем нитрования. Общая скорость определяется скоростью наиболее медленного процесса. Если скорость нитрования больше скорости диффузии, то обычно реакция протекает на поверхности раздела, как это имеет место для случая нитрования толуола и мононитротолуола. При малой скорости нитрования реакция будет происходить в объеме того слоя, в котором имеются реагирующие компоненты.

Динитротолуол хорошо растворяется в серной кислоте, тротил растворяется в ней значительно хуже.

Растворимость сплавов динитротолуол-тринитротолуол лежит между величинами растворимости чистого динитротолуола и чистого тринитротолуола и зависит от состава сплава. С увеличением содержания тротила растворимость сплава уменьшается. Значительное снижение растворимости наблюдается при добавлении к динитротолуолу 20–30% тротила. Дальнейшее изменение растворимости происходит более плавно и снижается пропорционально увеличению содержания тротила в сплаве.

Растворимость продуктов сильно зависит от концентрации серной кислоты и значительно меньше от температуры.

При частичном растворении сплава динитротолуол-тротил происходит распределение динитротолуола между слоями. Динитротолуол как продукт, обладающий большей растворимостью, в большем количестве переходит в минеральный слой, чем тротил. Таким образом, минеральный слой по сравнению с органическим обогащается динитротолуолом. Тем не менее, коэффициент распределения динитротолуола вследствие низкой растворимости сплавов в серной кислоте очень мал (0,3–0,4), что указывает на сравнительно небольшую концентрацию динитротолуола в минеральном слое.

Коэффициент распределения азотной кислоты между минеральным и органическим слоями для случая нитрования динитротолуола в среде 93% H2SO4 при 90°С равен примерно единице, что указывает на большую степень поглощения азотной кислоты органическим слоем [18, с. 106].

В гомогенных и гетерогенных условиях с увеличением концентрации HNO3 в кислотной смеси скорость реакции увеличивается до предела, а затем падает. В гетерогенных условиях максимум отодвигается в сторону смесей, содержащих больше HNO3. Подсчет концентрации HNO3 в минеральном слое по коэффициенту распределения показывает, что она равна той же величине, что и концентрация HNО3, при которой скорость нитрования в гомогенной среде достигает максимума.

Таким образом, при нитровании в гетерогенных условиях снижение концентрации HNО3 в минеральном слое уменьшает скорость нитрования динитротолуола, основная масса которого нитруется, по-видимому, в минеральном слое.

Нитрование толуола до мононитротолуола и мононитротолуола до динитротолуола в гетерогенных условиях в значительной степени является «поверхностной» реакцией, что следует из зависимости скорости ее от интенсивности перемешивания. Реакция нитрования динитротолуола в гетерогенных условиях не ограничивается одной поверхностью раздела (о чем свидетельствует малая зависимость ее скорости от интенсивности перемешивания), а значительно распространяется вглубь минерального слоя (основная часть реакции, протекает в минеральном слое). Реагирующие компоненты – динитротолуол и азотная кислота распределяются между слоями в соответствии с растворимостью в них и с соотношением объемов слоев. В случае нитрования динитротолуола реакция идет в объеме каждого слоя. Скорость нитрования в органическом слое, по-видимому, имеющая место только при высоком факторе нитрующей активности, значительно ниже скорости нитрования в минеральном слое.

Причиной этого является то, что в органическом слое находится только HNО3, так как H2SО4 в этот слой практически не переходит. Поэтому при сравнительно малых объемах органического слоя можно считать, что нитрование динитротолуола идет только в минеральном слое, причем скорость его зависит от степени растворимости динитротолуола в кислоте. С повышением концентрации кислоты увеличивается растворимость в ней динитротолуола и значительно облегчается процесс нитрования динитротолуола.

Присутствие органического слоя в некотором отношении отрицательно влияет на течение процесса нитрования. Органический слой обладает высокой растворяющей способностью по отношению к нитрующему агенту – азотной кислоте, что в значительной степени снижает концентрацию азотной кислоты в минеральном слое, снижая тем самым скорость нитрования.

Вторичная реакция – окисление протекает в органическом и минеральном слоях. При этом, по-видимому, окисление в органическом слое вследствие присутствия в нем HNО3 без H2S04 идет в большей степени, чем в минеральном. Окислительное действие азотной кислоты в минеральном слое снижается присутствием серной кислоты.

Отрицательное влияние на скорость нитрования органического слоя сказывается также и на снижении концентрации динитротолуола в минеральном слое. Снижение концентрации динитротолуола происходит за счет перехода его в органический слой, правда только в том случае, если последний представляет собой расплавленный тротил. В присутствии слоя расплавленного тротила динитротолуол распределяется между органическим и минеральным слоями в соответствии с растворимостью в них и соотношением объемов слоев. По мере течения реакции и увеличения слоя тротила уменьшается количество динитротолуола, растворенного в нитросмеси.

Страницы: 1, 2, 3, 4, 5, 6


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  бесплатно рефераты скачать              бесплатно рефераты скачать

Новости

бесплатно рефераты скачать

© 2010.