бесплатно рефераты скачать
  RSS    

Меню

Быстрый поиск

бесплатно рефераты скачать

бесплатно рефераты скачать: Графічні методи розв’язування задач із параметрами

: Графічні методи розв’язування задач із параметрами

Міністерство освіти науки України

Дніпропетровський національний університет

Кафедра математичного аналізу

Факультет заочної та дистанційної освіти

ДИПЛОМНА РОБОТА

Графічні методи розв’язування задач із параметрами

Виконавець Керівник роботи

Студентка групи ЗММ-00-01к. ф. - м. н., доцент

Лісняк Л.В. Трактинська В.М.

“___” червня 200_ р. “____" червня 200_ р.

Допускається до захисту

Завідувач кафедроюРецензент

доктор фіз. - мат. наук, професорк. ф. - м. н., доцент

Бабенко В.Ф. Великін В.Л.

“___” червня 200_ р. “___”червня 200_ р.

м. Дніпропетровськ 200_ р.


Реферат

Дипломна робота містить 105 стор., 95 рис., 5 табл. ., 7 джерел.

Об’єктом дослідження є задачі з параметрами.

Мета роботи - систематизувати графічні методи розв’язання задач з параметрами.

Методика дослідження - вивчення метода та розв’язування задач.

Результати досліджень можуть бути застосован при викладанні теми “Графічні методи розв’язування задач із параметрами" в математичних класах середніх шкіл та ліцеях.

Перелік ключових слів: ПАРАМЕТР, ФУНКЦІЯ, РОЗВ’ЯЗОК, РІВНЯННЯ, НЕРІВНІСТЬ, ПАРАЛЕЛЬНИЙ ПЕРЕНОС, ПОВОРОТ, ГОМОТЕТІЯ, КООРДИНАТНА ПЛОЩИНА, ПОХІДНА.


Annotation

This degree thesis of the 5th year student (DNU, Faculty of Mechanics and Mathematics, Department of Mathematical Analysis) deals with graphic methods of the decision of problems with parameters. The work is interesting for the students and post-graduates students of mathematical specialties.

Bibliography: 7


Зміст

Вступ

Розділ 1. Координатна площина

1.1 Паралельний перенос

1.2 Поворот

1.3 Гомотетія. Стиск до прямої

1.4 Дві прямі на площині

Розділ 2. Координатна площина (x; a)

Розділ 3. Застосування похідної

Список використаної літератури


Вступ

В програмах по математиці для середніх шкіл задачам з параметрами відводять незначне місце. Тому, в перше чергу, необхідно вказати розділи загальноосвітньої математики, в яких присутня сама ідея параметра.

Так, з параметрами учні зустрічаються при введенні деяких понять. Розглянемо як приклади наступні об’єкти:

функція пряма пропорційність  (де - змінні, - параметр, );

лінійна функція  (де - змінні, - параметри);

лінійне рівняння  (де - змінна, - параметри);

рівняння першої степені  (де - змінна, - параметри, );

квадратне рівняння  (де - змінна, - параметри, );

До задач з параметрами, які розглядаються в курсі середньої школи, можна

віднести, наприклад, пошук розв’язків лінійних та квадратних рівнянь в загальному виді, дослідження кількості їх коренів в залежності від значень параметрів

Природно, що такий невеликий клас задач багатьом учням не дозволя усвідомити головне: параметр (фіксоване, але невідоме число) має двоїсту природу. По-перше, параметр можна розглядати як число, а по-друге, - це невідоме число. Таким чином, ділення на вираз, який містить параметр, добування кореня парного ступеня із таких виразів потребує попередніх досліджень. Як правило, результати досліджень впливають і на розв’язок, і на відповідь.

Головне, що необхідно усвідомити при роботі з параметром - це необхідність обережного відношення до фіксованого, але невідомого числа.

Дипломна робота присвячена розробці методики викладання теми “Графічн методи розв’язування задач з параметрами”.

Робота складається із вступу, 3 розділів та списку використано літератури. Кожний із 3 розділів присвячений одному із графічних прийомів. Розділи діляться на параграфи. Кожний параграф побудовано за такою структурою. На початку параграфа наводиться необхідний теоретичний матеріал, потім даються задачі із подробним розв’язанням, а наприкінці наведені задачі для самостійно роботи з відповідями.

І розділ роботи “Координатна площина " присвячений побудові графічного образу на координатній площині .

ІІ розділ роботи “Координатна площина " присвячений побудові графічного образу на координатній площині .

ІІІ розділ роботи “Застосування похідної” присвячений побудов графічного образу із застосуванням похідної.

Дипломна робота може бути використана вчителями та студентами старших курсів при проведенні педагогічної практики.


Розділ 1. Координатна площина

На площині  функція  задає сім’ю кривих, які залежать від параметра . Кожній сім’ї функцій  властиві деякі властивості. Нас буде цікавити питання: за допомогою якого перетворення площини (паралельний перенос, поворот, гомотетія і т.д.) можна перейти від однієї кривої сім’ї до будь-яко ншої. Кожному з таких перетворень буде присвячено окремий підрозділ.

Не завжди графічний образ сім’ї функцій  описується простим перетворенням. Тому в таких ситуаціях необхідно зосередити увагу не на тому, як пов’язані криві однієї сім’ї, а на самі криві. Іншими словами, можна виділити ще один тип задач, в яких ідея розв’язку перш за все заснована на властивостях конкретних геометричних фігур, а не властивостях сім’ї взагалі. Нас будуть цікавити прямі та параболи. Такий вибір обумовлено окремим (основним) положенням лінійної та квадратичної функції в шкільній математиці.

Говорячи про графічні методи, неможливо обійти одну проблему, породжену практикою конкурсних екзаменів. Мається на увазі питання про законність розв’язку, який заснований на графічних зображеннях. З формальної точки зору результат, який “знятий" з рисунку, знайдений нестрого. Але вимоги до рівня математичної строгості для учня повинні визначатися здоровим глуздом.

Побудова графічних образів в даній роботі заснована на побудов графіків виду  за допомогою перетворень графіка функції .


1.1 Паралельний перенос

Почнемо з задач, в який членами сім’ї кривих  будуть прямі.

1. Для кожного значення параметра а визначити число розв’язків рівняння .

Розв’язання. Побудуємо графіки функцій  та .

З рисунка 1.1.1 випливає, що при - розв’язків немає, при  - 2 розв’язки, при - 4 розв’язки, при - 3 розв’язки, при - 2 розв’язки.

Рис.1.1.1

Відповідь: при - розв’язків немає, при  - 2 розв’язки, при - 4 розв’язки, при - 3 розв’язки, при - 2 розв’язки.

2. Для кожного значення параметра визначити число розв’язків рівняння .

Розв’язання. Побудуємо графік функції . Знайдемо ОДЗ функції , тобто .

З рисунка 1.1.2 випливає, що при  - розв’язків немає, при - 3 розв’язки, при - 4 розв’язки, при - 2 розв’язки, при - немає розв’язків.


Рис.1.1.2

Відповідь: при  - розв’язків немає, при - 3 розв’язки, при - 4 розв’язки, при - 2 розв’язки, при - немає розв’язків.

3. Знайти число розв’язків рівняння .

Розв’язання. Побудуємо графік функції .

Рис.1.1.3

З рисунка 1.1.3 випливає, що при - розв’язків немає, при - розв’язки  або , при - 4 розв’язки, при - 3 розв’язки, при - 2 розв’язки.

Відповідь: при - розв’язків немає, при - розв’язки  або , при - 4 розв’язки, при - 3 розв’язки, при - 2 розв’язки.

4. Розв’язати рівняння .

Розв’язання. Побудуємо графік функції . Знайдемо ОДЗ: , звідси .

Рис.1.1.4

Розв’язуючи рівняння , знаходимо .

Якщо , то ; якщо , то  або .

Якщо  або , то , звідси якщо , то , якщо , то розв’язків немає.

5. При яких а рівняння  ма рівно три розв’язки?

Розв’язання. Побудуємо графіки функцій  та .


Рис.1.1.5

Графіки  та  мають три точки перетину при а=-1 та а=-0,5.

Відповідь: а=-1 та а=-0,5.

6. При яких значення параметра а рівняння  має єдиний розв’язок?

Розв’язання. Побудуємо сім’ю функцій , а точніше графіки

функцій та . Знайдемо ОДЗ рівняння: .

Рис.1.1.6


Графіки функцій та  мають одну точку перетину при  та .

Відповідь:  та .

7. При яких значеннях а рівняння  має два корені?

Розв’язання. Побудуємо графіки функцій  та . ОДЗ: , звідки . Знаходимо дві точки перетину графіків: , звідси , . Тоді для параметра  справедлива нерівність .

Рис.1.1.7

Відповідь: .

8. Розв’язати нерівність .

Розв’язання. Побудуємо графік прямої  та пів парабол .


Рис.1.1.8

Якщо пів парабола розташована нижче прямої, то нерівність розв’язків немає. Розв’язки з’являються тільки з моменту дотику. Знайдемо значення параметра , яке відповідає моменту дотику двох функцій: , звідси , , звідси . При  маємо 1 розв’язок. Тобто, при  нерівність розв’язків немає.

Якщо , то .

Далі, зсуваючи півпараболу ліворуч, зафіксуємо момент, коли графіки ,  мають дв спільні точки. Таке розташування забезпечує вимога: , тоді розв’язком буде відрізок .

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  бесплатно рефераты скачать              бесплатно рефераты скачать

Новости

бесплатно рефераты скачать

© 2010.