бесплатно рефераты скачать
  RSS    

Меню

Быстрый поиск

бесплатно рефераты скачать

бесплатно рефераты скачатьАроматичні вуглеводні сполуки

Ароматичні вуглеводні сполуки

752

Ароматичні вуглеводні сполуки

ВСТУП

Назва ароматичні сполуки виникла на початку 19-го ст., коли були вперше відкриті сполуки цього типу при їх виділенні із рослинних смол і бальзамів, що мали дуже приємні запахи. І хоч пізніше виявилось, що в основної більшості ароматичних сполук, навпаки, запахи неприємні, однак назва збереглася.

Ароматичні вуглеводні (арени) - це циклічні сполуки бензенового ряду, що мають специфічну властивість - ароматичність, яка зумовлює спільні ознаки в їх будові та реакційній здатності.

Структурним родоначальником аренів є бензен.

1 АРОМАТИЧНІСТЬ. БУДОВА МОЛЕКУЛИ БЕНЗЕНУ

Поняття ароматичність обєднує сукупність певних ознак, які визначаються за правилом Хюккеля:

Ароматичною називається замкнута система, що має плоский циклічний -скелет і 4n+2 узагальнених -електрони, де n = =1,2,3,…

Структура молекули бензену С6Н6 ідеально відповідає правилу ароматичності Хюккеля, оскільки в ній всі шість атомів С перебувають у стані sp2-гібридизації. Внаслідок цього осі трьох sp2-гібридизованих одноелектронних орбіталей знаходяться на одній площині під кутом 1200, а вісь четвертої, негібридизованої, рz-орбіталі розміщується перпендикулярно до них (рис. 13б). Кожний атом карбону утворює за рахунок гібридизованих орбіталей три -звязки: два - із сусідніми атомами карбону, а третій - при перекриванні зі сферичною s-орбіталлю атома гідрогену (рис. 13а). Отже, усі -звязки в молекулі С6Н6 копланарні, тобто лежать на одній площині. Таким чином, шість атомів С без напруження замикаються за допомогою -звязків у правильний шестикутник - так званий -скелет молекули.

Шість негібридизованих рz-орбіталей, які розміщуються перпендикулярно до -скелета і паралельно одна до одної, взаємно перекриваються, утворюючи єдину делокалізовану -електронну хмару, тобто виникає колове спряження (рис.3в). Найбільша електронна густина в цій спряженій системі розміщується над і під площиною -скелета молекули і охоплює всі шість атомів С у циклі. Завдяки коловому спряженню всі звязки між атомами карбону вирівнюються, вони мають однакову довжину (0,139нм), яка є проміжною між довжиною подвійного звязку в алкенах (0,133нм) і одинарного в алканах (0,154нм). Вирівнювання звязків С-С у бензені графічно зображується правильним колом всередині правильного шестикутника

Колове спряження та вирівнювання довжини звязків приводить до того, що звязки у бензені не можуть вважатися одинарними чи подвійними. На основі точних фізико-хімічних методів дослідження встановлено, що насправді кратність звязків С-С у молекулі бензену становить 1,67.

Рисунок 3 - Будова молекули бензену: а) -скелет молекули; б) розташування негібридизованих pz-орбіталей перпендикулярно до площини у-зв'язків; в) утворення колового спряження

Колове спряження дає виграш в енергії 150,7 кДж/моль. Нагадаємо, що енергетичний виграш за рахунок утворення спряженої системи називається енергією спряження, або енергією делокалізації, і дорівнює енергії, яку необхідно витратити для руйнування ароматичної системи.

Електронна будова і ароматичність бензену зумовлює його властивості, у тому числі високу термічну стійкість (він не розкладається навіть при нагріванні до 9000С), відсутність схильності до реакцій приєднання (незважаючи на велику ненасиченість), оскільки реакції приєднання супроводжуються порушенням ароматичності, а це енергетично невигідно.

2. КЛАСИФІКАЦІЯ. НОМЕНКЛАТУРА

За кількістю бензенових кілець арени поділяються на дві групи.

1Моноядерні арени - це бензен та його гомологи, в яких один чи декілька атомів гідрогену заміщені на аліфатичні бокові ланцюги (насичені чи ненасичені). Назви моноядерних аренів утворюються від родоначальної структури - бензену (стара назва бензену, яка трапляється досить часто, - бензол) із зазначенням природи замісників та їх положення. Для багатьох гомологів бензену вживають тривіальні назви, які набули настільки широкого розповсюдження, що їх було введено у правила номенклатури IUPAC. Якщо бензенове кільце містить два радикали, то залежно від їх взаємного розташування використовуються додаткові префікси: орто- (1,2-положення), мета- (1,3-положення) і пара- (1,4-положення). Приклади моноядерних аренів:

Бензен Толуол Кумол

n-Ксилол м-Цимол Етилбензен

(1,4-диметилбензен) (3-ізопропілметилбензен)

Стирен Фенілацетилен Мезитилен

Дуже часто для називання складних сполук необхідно знати назви ароматичних радикалів - арилів, які умовно позначаються спільним символом Ar:

(С6Н5-) (С6Н5-СН2-) (С6Н5-СН=) (о-СH3-С6Н4-)

Феніл Бензил Бензиліден о-Толіл

2Поліядерні арени, які складаються з декількох бензенових ядер. Вони, у свою чергу, поділяються на конденсовані та неконденсовані, або ізольовані.

Назви неконденсованих (ізольованих) поліаренів утворюються згідно із замісниковим і радикально-функціональним способами IUPAC:

Дифеніл Дифенілметан м-Фенілтолуол

Для конденсованих поліядерних аренів вживаються такі назви:

Нафталін Антрацен Фенантрен

У монозаміщених похідних нафталіну однотипні атоми карбону позначаються грецькими буквами і , у дизаміщених - цифрами від 1 до 8, при цьому атоми С, спільні для обох циклів, не нумеруються. В неконденсованих поліядерних аренах одне кільце нумерується цифрами без штрихів, а всі інші - із штрихами, наприклад:

-Метилнафталін 1,5-Диметилнафталін

3 - Метилтрифенілметан

ІЗОМЕРІЯ МОНОЯДЕРНИХ АРЕНІВ

Ізомерія монозаміщених моноядерних аренів зумовлена будовою замісника, наприклад:

Пропілбензен Ізопропілбензен

У ди- і багатозаміщених гомологів бензену виникає ще один вид ізомерії, зумовлений різним положенням замісників:

орто-Ксилол мета-Ксилол nара-Ксилол

ФІЗИЧНІ ВЛАСТИВОСТІ

Моноядерні арени - безбарвні леткі рідини з густинами 0,8-0,9г/мл, нерозчинні у воді, але добре розчинні у малополярних розчинниках.

Самі вони також є добрими розчинниками. Температури кипіння гомологів бензену зростають із підвищенням молекулярної маси: кожна нова метиленова група -СН2- збільшує температуру кипіння у середньому на 20-300. Всі арени мають характерні запахи, деякі (толуол) виявляють помітну наркотичну дію.

Бензен і більшість конденсованих поліаренів належать до високотоксичних речовин. Вдихання їх парів викликає головний біль, а при високих концентраціях - отруєння. Пари бензену вражають слизисту оболонку ока. А рідкий бензен може проникати через шкіру. Для нього характерна кумулятивність, тобто виявлення токсичної дії при поступовому накопиченні в організмі.

Поліядерні арени - білі тверді речовини, майже без запаху, слизькі на дотик, нерозчинні у воді.

ХІМІЧНІ ВЛАСТИВОСТІ БЕНЗЕНУ

Незважаючи на велику ненасиченість аренів, для них не характерні реакції приєднання. Більш того, ненасиченість бензену не відкривається за допомогою звичайних якісних реакцій: він не знебарвлює ні бромну воду, ні розчин KMnO4.

Хімічні властивості аренів зумовлюються у першу чергу наявністю спряженої системи і високою енергією делокалізації, тому бензен і його гомологи вступають переважно в такі реакції, при яких зберігається їх ароматичність.

І Реакції електрофільного заміщення SE

Механізм реакцій електрофільного заміщення за участю аренів складається з декількох послідовних стадій.

1 Генерування електрофільної частинки у відповідних умовах під впливом каталізатора, який сприяє спочатку поляризації, а потім і розриву звязків у молекулі реагенту:

Поляризація

молекули + - Розрив звязку

Е - А ------------- E - A --------------- E+ + A-.

Каталізатор

2 Утворення -комплексу. Початкова атака електрофілом Е+ -електронної хмари бензенового кільця проходить швидко і без порушення ароматичності системи:

Швидко

+ Е+ ----------

---------

-Комплекс

3 Утворення -комплексу - повільна стадія, під час якої електрофіл Е+ утворює -звязок з одним із атомів карбону за рахунок двох -електронів, які вилучаються із спряженої системи. При цьому атом карбону переходить із sp2- у sp3-гібридизований стан, ароматичність системи порушується, тому що у кільці залишаються тільки чотири -електрони, які розподіляються на пять sp2-гібридизованих атомів карбону. Молекула перетворюється в -комплекс - карбкатіон, точніше - аренонієвий катіон:

Повільно

------- sp3-Гібридизований атом карбону

-Комплекс -Комплекс (аренонієвий катіон)

4 Повернення ароматичності. Оскільки втрата ароматичності енергетично невигідна, система прагне повернути її найпростішим шляхом, а саме - відщепленням протону Н+ від -комплексу. Внаслідок цього два електрони, що утворювали звязок С-Н, приєднуються до тих чотирьох -електронів, які залишалися в -комплексі. Тому замкнута шестиелектронна система поновлюється і молекула переходить в ароматичний стан:

Швидко

--------- + H+.

-Комплекс Продукт Протон

5 Утворення побічного продукту. Відщеплений протон взаємодіє з негативно зарядженим аніоном А-, що утворився при розриві звязків у молекулі реагенту на перший стадії:

Н+ + А- ------- HA.

Побічний продукт

У загальному вигляді механізм реакції електрофільного заміщення в аренах можна зобразити схемою

+ Е+ ---

Субстрат Електрофіл -Комплекс

-H+

---> ------->

-Комплекс Продукт

Розглянемо найважливіші реакції електрофільного заміщення SE.

1 Галогенування бензену проходить тільки за наявності каталізаторів - так званих кислот Льюїса (речовин, здатних звязувати вільну електронну пару): AlCl3, FeCl3, AlBr3, FeBr3, SnCl4, TiCl4, BF3. Практичного значення набули реакції хлорування та бромування, тому що реакція з хімічно активним F2 проходить деструктивно, а з І2 - дає надзвичайно малий вихід завдяки низькій реакційній здатності йоду.

80оC

+ Br2 ----- + HBr,

AlВr3

Бромбензен

25оC

+ Cl2 -------- + HCl.

AlCl3

2 Нітрування. Бензен реагує дуже повільно навіть з концентрованою HNO3 при нагріванні, але при дії на нього нітрувальною сумішшю (суміш концентрованих HNO3 i H2SO4) досить легко перетворюється на нітропохідні.

Електрофільною частинкою є нітроїл-катіон NO2+, який утворюється під впливом сірчаної кислоти:

HO-NO2(к) + 2H2SO4 (к) 2HSO4- + H3O+ + NO2+,

50оС

+ HO-NO2(к) -------- + H2O.

H2SO4 (к)

Бензен Нітробензен

3 Сульфування. Бензен сульфується при звичайній

температурі олеумом (розчин SO3 у 100% H2SO4) або чадною сірчаною кислотою, яка дає SO3 внаслідок встановлення рівноваги:

2H2SO4 SO3 + H3O+ + HSO4-.

Отже, електрофільним реагентом є сульфур(ІV) оксид, оскільки за рахунок трьох електронегативних атомів оксигену, які відтягують на себе електронну густину звязків S=О, на атомі сульфуру виникає великий дефіцит електронної густини і достатньо значний частковий позитивний заряд (3+). Реакція сульфування належить до оборотних процесів: при оброблюванні продукту перегрітою водяною парою проходить зворотна реакція - десульфування:

SO3H2SO4, 250C

----------------

----------------.

H2O, 1500C (-H2SO4)

Бензен Бензенсульфонова кислота

4 Алкілування - реакція Фріделя-Крафтса - введення алкільної групи у бензенове кільце за наявності каталізаторів (кислот Льюїса) з утворенням гомологів бензену. Як алкілувальний реагент використовують галогеналкани СnH2n+1Hal, спирти CnH2n+1OH, алкени CnH2n, наприклад:

80о

+ CH3Cl ------ + HCl.

AlCl3

Бензен Толуол

Каталізатор ініціює утворення електрофілу за схемою

СН3Cl + AlCl3 CH3+ + [AlCl4]-.

Реакції з алкенами і спиртами каталізуються найчастіше кислотами

0оC

+ СH3-CH====CH2 ---,

HF

Ізопропілбензен (кумол)

OH 60оC

+ СH3-C-CH3 ---------.

OH H3PO4 Трет-бутилбензен

5 Ацилювання - заміщення атома гідрогену в бензеновому кільці на ацильну групу RCO. Ацилювальним реагентом є галогенангідриди чи ангідриди карбонових кислот; при цьому одержують змішані ароматично-аліфатичні кетони.

O 80оC

+ СН3-С -------- + HCl

Cl AlCl3

Бензен Хлорацетил Ацетофенон

O

CH3-C 80оC.

+ O -------- + CH3COOH

CH3-C AlCl3

О

Бензен Ангідрид оцтової кислоти Ацетофенон

ІІ Реакції приєднання АЕ

Реакціі приєднання для ароматичних вуглеводнів не характерні, оскільки вони супроводжуються порушенням ароматичності і вимагають великої витрати енергії. Тому ці реакції проводяться в дуже жорстких умовах:

1 Гідрування (відновлення)

200оC, 50 Атм

+ 3Н2 ------------ .

Ni

Бензен Циклогексан

Гідрування використовується для одержання циклогексану, який є, по-перше, добрим розчинником, а по-друге, - вихідною речовиною при добуванні адипінової кислоти, а з неї - капролактаму.

Реакція оборотна: при 3000С і нормальному тиску проходить зворотний процес.

2 Хлорування при інтенсивному ультрафіолетовому опромінюванні:

УФ

+ 3Cl2 ---------

Гексахлорциклогексан (гексахлоран)

Гексахлоран - сильна харчова, контактна і дихальна отрута, застосовується як інсектицид: смертельна доза для мух становить усього 10-12 г.

ІІІ Реакції окиснення

Відмінною рисою ароматичних вуглеводнів є їх стійкість по відношенню навіть до сильних окисників. У звичайних умовах на них не діють ні концентровані кислоти, ні хромова суміш, ні розчин KMnO4. Однак у жорстких умовах вони піддаються окисненню:

О О

500оC НС С НС С О

+ О2 ------ О---- О

V2O5 НС С НС С

Бензен -2СО2 О О

-2Н2О

Малеїновий ангідрид Малеїнова кислота

Малеїновий ангідрид і малеїнова кислота використовуються у виробництві поліестерних смол, склопластику і лакофарбових матеріалів.

У живих організмах бензен під дією ферментів окиснюється до дуже шкідливої сполуки - муконової кислоти:

+ 2О2 ------- HOOC-CH=CH-CH=CH-COOH.

Бензен Фермент Муконова кислота

ВПЛИВ ЗАМІСНИКІВ НА РЕАКЦІЙНУ ЗДАТНІСТЬ АРОМАТИЧНИХ ВУГЛЕВОДНІВ

Найважливішим чинником, що визначає хімічні властивості речовин, є розподілення електронної густини в молекулах, яке залежить від взаємного впливу атомів і атомних груп. Якщо молекула містить тільки -звязки, взаємний вплив здійснюється через індуктивні ефекти, а в спряжених системах виявляється дія мезомерного ефекту.

Мезомерний ефект, або ефект спряження - це зміщення електронів, які утворюють -звязки спряженої системи, а також неподілених електронних пар атомів електронегативних елементів (0, S, N), що містяться у ланцюгу.

Замісники можуть виявляти позитивний мезомерний ефект (+М), якщо зміщують -електронну густину від себе, і негативний мезомерний ефект (-М), якщо зміщення електронної густини відбувається у протилежному напрямку.

Одна і та сама група атомів може виявляти одночасно два електронних ефекти: мезомерний і індуктивний. Обидва ефекти можуть як збігатися, так і не збігатися за напрямком свого впливу. Наприклад, аміногрупа NH2 виявляє негативний індуктивний ефект (-І), тобто зміщує електронну густину у-зв'язку на себе, і в той же час - позитивний мезомерний (+М), завдяки якому р-електронна густина спряженої системи зміщується від аміногрупи. Найчастіше вплив мезомерного ефекту перебільшує дію індуктивного.

Молекула бензену - ця спряжена система з рівномірним і симетричним розподіленням шестиелектронної -електронної хмари. Однак наявність у бензеновому кільці замісника призводить до певного перерозподілу електронної густини і, як наслідок, до зміни реакційної здатності сполуки. Тобто замісник виявляє орієнтуючу (спрямовуючу) дію при введенні у кільце ще одного, нового замісника.

За характером орієнтуючої дії замісники поділяються на два типи.

Замісники І роду (елек-тронодонорні), які підвищують електронну густину бензенового кільця (особливо в о- і n-положеннях) і збільшують швидкість реакцій електрофільного заміщення SE. Такі замісники називаються активуючими.

До них належать атоми і атомні групи з позитивним мезомерним (+М) чи індуктивним (+І) ефектом (табл. 2).

Оскільки електроно-донорний замісник утворює з кільцем загальну спряжену систему, то відбувається перерозподіл електронної густини таким чином, що найбільша її частина зосереджується в о- і n-положеннях на атомах С - з цієї причини їх часто називають орто- і параорієнтантами. За рахунок виникнення часткових негативних зарядів (-) ці атоми карбону стають центрами електрофільної атаки. До того ж полярність звязків С-Н в о- і n-положеннях збільшується, тому зростає рухливість атомів Н, що полегшує їх заміщення.

Серед замісників І роду окреме місце займають галогени, які хоч і виявляють о- і n-орієнтуючу дію, але на відміну від інших електронодонорних замісників ускладнюють вступ нового замісника і сповільнюють швидкість реакції SE порівняно із бензеном. Така особливість галогенів поснюється тим, що їх негативний індуктивний ефект за абсолютною величиною перебільшує позитивний мезомерний ефект | -I| > |+M|.

Подвійний о- і n-орієнтуючий вплив електронодонорних замісників приводить до утворення внаслідок реакцій SE суміші ізомерів, наприклад:

+Н2О

+ HO-NO2 о-Нітрокумол

+ H2O

Кумол

n-Нітрокумол

Замісники ІІ роду (електроноакцепторні) - це метаорієнтанти, які знижують електронну густину бензенового кільця і зменшують швидкість реакцій електрофільного заміщення. Їх називають дезактивуючими замісниками (табл. 2).

Замісниками ІІ роду є атоми і атомні групи, які відтягують -електронну хмару бензенового кільця на себе завдяки негативному мезомерному (-М) чи негативному індукційному (-І) ефекту. Тому електронна густина на бензеновому кільці зменшується і внаслідок її перерозподілу лишається дуже незначний за величиною частковий негативний заряд (-) на атомах карбону в мета-положеннях. Отже, замісники ІІ роду зменшують реакційну здатність кільця в реакціях SE, однак напрямлюють нові електрофільні групи у мета-положення, хоч реакції SE проходять дуже повільно.

Страницы: 1, 2


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  бесплатно рефераты скачать              бесплатно рефераты скачать

Новости

бесплатно рефераты скачать

© 2010.