бесплатно рефераты скачать
  RSS    

Меню

Быстрый поиск

бесплатно рефераты скачать

бесплатно рефераты скачатьДействие озона на насыщенные полимеры

Действие озона на насыщенные полимеры

Действие озона на насыщенные полимеры

Действие озона на полимеры и связанное с ним изменение свойств полимерных материалов интенсивно изучаются, особенно в последние годы [1-5]. Это обусловлено стремлением изменить свойства традиционных материалов, расширить области применения последних и улучшить эксплуатационные характеристики изделий из полимеров. Кроме того, значительное увеличение концентрации агрессивных примесей в атмосфере и в средах, где работают полимеры, заставляет задумываться над проблемами защиты полимерных материалов от действия этих сред. В частности, оказалось, что ускоренное старение и пробой диэлектриков, используемых в конденсаторах, кабелях и других электрических устройствах, в значительной мере связаны с образованием озона из атмосферного кислорода под действием переменного электрического поля.

Рис. 1 Рис. 2

Рис. 1. Изменение относительной адгезии красителя А к ПЭ-пленке при обработке ее пламенем горелки (1) и барьерным разрядом (2). Цифры на оси ординат соответствуют следующим техническим требованиям: 1 - плохо, 2 - недостаточно, 3 - удовлетворительно, 4 - хорошо, 5 - отлично. В-удельный расход энергии, V - расход пропана

Рис. 2. Зависимости диэлектрической проницаемости е (I) и тангенса диэлектрических потерь tg б (II) от температуры для пленки ПВХ: 1 - контрольный образец, 2 - образец, выдержанный 7 ч в атмосфере озона

Сообщалось, что озон и другие окисляющие компоненты загрязненной атмосферы промышленных центров могут быть инициаторами ускоренного фотохимического разрушения изделий из ударопрочного ПС [6]. Долговечность пластиков, используемых в технике, снижается, а ползучесть увеличивается под действием атмосферного озона [7]. Особенно быстро разрушается поверхность пластиков, что ухудшает внешний вид изделий из полимеров.

Большим недостатком широко распространенных карбоцепных полимеров, таких как ПЭ и ПП, является малое поверхностное натяжение и как результат плохая адгезия к металлам, красителям и другим материалам. Обработка в коронном или барьерном разряде или просто обдувание озоно-воздушной смесью позволяют значительно увеличить адгезию (рис. 1) [13].

Рис. 3. Изменение молекулярной массы ПС во времени в процессе его взаимодействия с озоном (СС14, 20°)

Рис. 4. ИК-спектры ПС до (1) и после обработки озоном в течение 70 мин при [О3]=1-10-4 моль/л (2) и 20 мин при [Оз]=1-10-3 моль/л (3)

Обработка в барьерном разряде применяется часто перед нанесением на ПЭ-пленку художественной отделки [14]. Считают, что озон является основным (хотя и не единственным) действующим началом при обработке пленки в разряде [15]. Наряду с увеличением поверхностного натяжения заметно меняется ряд других поверхностных свойств - гидрофильность, число межмолекулярных связей, устойчивость к растрескиванию [16].

На рис. 2 приведены зависимости диэлектрической проницаемости и тангенса диэлектрических потерь от температуры для пленки ПВХ до и после обработки ее озоном, которые обусловлены изменением дипольно-сегментальной подвижности [17].

В некоторых случаях под действием озона могут изменяться и основные механические свойства материала.

Озон используют для отбелки целлюлозы [9], модификации лигнина [18], разрушения водорастворимых полимеров в воде, например полиакриламида [19]. Было показано, что предварительная обработка поверхности самых различных полимеров (капрона, лавсана, крахмала и др.) озоном создает благоприятные условия для последующей прививки виниловых мономеров к поверхности [11].

Реакции макромолекулы с озоном сопровождаются образованием различных функциональных групп - карбонильных, карбоксильных, гидроксильных, перекисных и др., которые затем могут быть использованы для присоединения к макромолекуле спиновых меток, антиоксидантов, бактерицидных агентов [1].

При действии озона на растворы полимеров обычно наблюдается уменьшение ММ (рис. 3) и накопление кислородсодержащих функциональных групп (образование кислот, кетонов, перекисей и др.) [20]. Деструкция протекает легко при умеренных температурах, в том числе и при температуре ниже 0°, и обусловлена высокой реакционной способностью озона. Сопоставление числа прореагировавших молекул озона с числом разрывов цепи показывает, что число разрывов, приходящееся на один акт реакции, в начальные периоды опыта сохраняется постоянным и зависит от строения полимера. В табл. 1 приведены значения констант скорости и числа разрывов цепи на один акт реакции для различных полимеров [20].

Медленнее всего реагируют с озоном полимеры, содержащие фенильные циклы в основной цепи, в то время как полициклические полимеры (полинафтилены, полиантрацены) или полимеры с гетероатомами (поли карбонаты) вступают в реакцию значительно легче. В ряду полимеров с насыщенной углеводородной цепью скорость реакции возрастает при переходе от ПИБ к поливинилциклогексану (ПВЦ), одновременно наблюдается уменьшение числа разрывов цепи. Самая большая константа скорости у полибутадиена и полиизопрена и у них же наименьшее число разрывов на один акт реакции. Определение констант скорости реакций соединений, приведенных в табл. 1, проводилось в барботажном реакторе, как описано в работах [21, 22]. Механизм реакции озона с макромолекулами полимерного соединения удобно рассмотреть на примере ПС [23-26]. При действии озона на порошок ПС существенно изменяется его внешний вид и свойства. Полимер приобретает желтую окраску, пленки, полученные из него, становятся хрупкими и непрозрачными, ухудшаются диэлектрические свойства. Реакция сопровождается накоплением функциональных групп (карбонильных, перекисных и карбоксильных), характерных для окислительных процессов вообще.

Рис. 5. ЭПР-спектры образцов ПС, обработанных озоном в течение 1 (1) и 6 мин (2) и через 30 мин после прекращения подачи озона (3)

Рис. 6. Характер изменения концентрации R02» при озонировании порошка ПС ([Оз]=1,74-10-4 моль/кг, поверхность образца 6 м2/г)

Анализ ИК-спектров показал, что состав функциональных групп не изменяется при проведении реакции как с твердым ПС, так и с его растворами в СС14 [27]. Максимум поглощения при 1740 см-1 обусловлен валентными колебаниями С=0-групп (кетоны), которые входят в состав макромолекулы и не удаляются при переосаждении (рис. 4). Природа этих карбонильных соединений установлена по их способности реагировать с гидроксиламином. Обработка озонированного порошка ПС спиртовым раствором солянокислого гидроксиламина приводит к исчезновению при 1740 см-1 максимума и появлению новой полосы при 1680 см-1 (окси-мы). По измерениям, сделанным в работе [1], альдегиды окисляются в 100 раз легче кетонов или СН2-групп, поэтому их присутствие в продуктах реакции маловероятно.

В ходе реакции при больших степенях конверсии становится заметным расходование фенильных циклов (уменьшается интенсивность полосы при - v=1500 см-1) и третичных СН-групп [28]. Судя по сохранению неизменной интенсивности полос поглощения при v=700 и 2930 см-1, соответствующих деформационным и валентным колебаниям СН2-групп,

в начальном периоде реакции они не расходуются -.

Значительные изменения в спектре наблюдаются и в области 1000-

1200 см-1. Уменьшение числа разрешенных полос и общее увеличение интенсивности поглощения свидетельствуют о нарушении симметрии молекул озонированного ПС. Это можно объяснить структурированием вследствие сшивания отдельных цепей при озонировании. Наличие сшивания подтверждается также и тем, что после озонирования значительная часть полимера утрачивает способность растворяться и образует гели.

Первичная атака ПС озоном может протекать по трем различным на правлениям.

Реакция (1) приводит к образованию ароматических озонидов, которые составляют основную долю перекисных соединений. По данным ИК-спектроскопии можно оценить их долю, которая составляет 10-15% в расчете на прореагировавший ПС. Промежуточные стадии реакции ответственны за сложные зависимости изменения вязкости растворов во времени при озонировании.

Присоединение первой молекулы озона к ароматическому циклу нарушает сопряжение и значительно облегчает присоединение двух следующих молекул. Первичные озониды нестабильны и легко распадаются на фрагменты, которые быстро соединяются вновь, изменив на 180° пространственную ориентацию (реакция (1а)), либо изомеризуются (реакция (16)). На схеме реакция (1а) приведена условно, демонстрируется та ее часть, которая приводит к появлению сшивок.

Проведение опыта непосредственно в резонаторе ЭПР-спектрометра позволило зафиксировать в продуктах реакции свободные радикалы (рис. 5), причем при непрерывной подаче озона наблюдается спектр пероксирадикалов [29], который после прекращения подачи озона трансформируется в симметричный синглет (g=2,0014). Последний весьма устойчив и сохраняется неопределенно долго. Интенсивность этого сигнала составляет 0,3-0,5 от исходного пероксирадикала. Длительная (20 мин) реакция ПС с озоном сопровождается наложением синглета на сигнал перокси-радикала. Интерпретация синглета затрудняется отсутствием близких аналогов, но можно предположить, что это либо ЭПР-спектр ароматической полисопряженной системы типа полифенилацетилена, либо сложный семихиноидный или феноксильный радикалы.

На рис. 6 приведена зависимость изменения концентрации пероксирадикалов от времени [26]. Снижение стационарной концентрации перекисных радикалов при больших временах обработки обусловлено расходованием реакционноспособных третичных СН-групп при обработке порошка озоном.

Увеличение концентрации радикалов в начальном периоде, по-видимому, связано с образованием в системе одного или нескольких промежуточных продуктов, которые реагируют с озоном легче, чем исходный ПС. На рис. 7 представлены результаты исследования зависимостей концентрации озона при выходе из реактора и накопления стабильных конечных продуктов от времени [30]. Видно, что по мере протекания реакции скорость поглощения озона вначале возрастает, а затем уменьшается. Минимум на кривой [Оз]в - t отвечает максимуму на кривой [R02] - t (рис. 6). Вос-> ходящая ветвь зависимости [03] в - t (рис. 7, а) спрямляется в полулогарифмических координатах (первый порядок расходования третичных С-Н-связей), что тоже соответствует сказанному выше. Природа промежуточного продукта, способного эффективно образовывать радикалы, неясна, поскольку на кривой накопления основных функциональных групп сходных изменений обнаружить не удалось. Расход озона на образование 1 моля функциональных групп составляет 1,4±0,3 моля.

Стационарная концентрация перекисных радикалов является сложной функцией нескольких процессов:

В зависимости от концентрации реагентов, подвижности полимерной матрицы, условий опыта и от природы ближайших соседей механизм превращения перекисных радикалов в продукты реакции может быть различным. При небольших концентрациях озона в растворах преобладают процессы распада макромолекулярных перекисных радикалов, поскольку малая подвижность полимерных цепей препятствует бимолекулярному взаимодействию макрорадикалов. Гибель свободной валентности происходит при встречах вторичных низкомолекулярных радикалов друг с другом и с макромолекулами.

Увеличение концентрации озона сопровождается изменением характера зависимости ММ от времени. При малых концентрациях на ней появляются перегибы (рис. 8, кривая 3), при увеличении концентрации О3 ММ может не изменяться во времени (рис. 8, кривая 4) или может увеличиваться (рис. 8, кривая 5). Такая сложная форма зависимости ММ от концентрации О3 обусловлена протеканием в системе процессов сшивания. Если процессы разрушения макромолекулы обусловлены мономолекулярными реакциями распада радикалов, то сшивание обусловлено бимолекулярными актами взаимодействия промежуточных частиц и, естественно, их доля растет быстрее с увеличением концентрации озона. Независимость ММ от продолжительности озонирования наблюдали еще Грасси и Камерон [24], которые работали в области равновесия процессов распада и сшивания, однако интерпретация этой зависимости была дана неверно. Авторы полагали, что озон присоединился к С=С-связям, удаленным от концов макромолекулы, без изменения ММ. В настоящее время известно, что такой процесс сопровождается значительным уменьшением.

Сшивки, образующиеся в системе, можно разделить на два разных типа. Одни имеют перекисную природу и легко разрушаются под действием тепла [28] или восстановителей [24]. Большая часть таких сшивок, по-видимому, обусловлена образованием полимерных озонидов и в какой-то мере реакциями рекомбинации радикалов

Другие устойчивы к действию тепла и химических агентов. Они образуются главным образом при рекомбинации вторичных радикалов

Их образование характерно, в частности, при взаимодействии озона с твердым ПС. Последовательность реакций, протекающих при действии озона на ПС, несколько отличается от последовательности реакций, протекающих при термоокислительной деструкции ПС [32, 33], в первую очередь тем, что низкие температуры и большие скорости образования радикалов создают условия, в которых доля цепных процессов составляет 15-20% в балансе радикальных реакций, а главная часть продуктов образуется при распаде пероксирадикалов. Кислоты составляют небольшую часть продуктов реакции и могут образовываться как в результате окисления феноксирадикалов или продуктов их превращения, так и в результате разрушения ароматических озонидов. В обоих случаях в продуктах реакции должны присутствовать одинаковые соединения - муравьиная и глиоксалевая кислоты. При окислении твердого ПС содержание кислот, слишком мало и их не удается обнаружить, но при действии озона на ПС в растворе СС14 хроматографически идентифицируются обе указанные кислоты.

По изменению ЭПР-спектра в процессе реакции можно сделать вывод о том, что гибель свободной валентности у соединений, дающих ЭПР-спектр в виде синглета (полисопряженные системы), происходит при реакции с озоном или с продуктами распада пероксирадикалов, поскольку в отсутствие озона эти радикалы вполне устойчивы. Предположена же о реакции с R02* противоречит как зависимости [R02°] - t, так и наблюдаемому переходу сигнала R02* в синглет при прекращении подачи озона.

Свойства изделий из модифицированных полимеров во многом зависят от распределения функциональных групп по объему. В большинстве случаев желательно, чтобы модификации подвергались только приповерхностные слои полимера.

Экспериментальное исследование распределения функциональных групп по объему образца представляет довольно сложную задачу. В прошлом для этих целей применяли технику среза тонких слоев полимера микротомом с последующим исследованием слоев [34]. С развитием метода нарушенного полного внутреннего отражения стало возможным изучение связи между расстоянием от поверхности образца и концентрацией функциональных групп [35, 36]. На рис. 9 приведены такие зависимости для различных времен обработки поверхности озоном. Видно, что содержание карбонильных групп убывает с удалением от поверхности. Такой вид зависимости легко объяснить, рассматривая скорость реакции как функцию двух процессов - диффузии озона в глубь полимера и его расходование в реакции

где I - расстояние от поверхности, D - коэффициент диффузии. Поскольку интегральное содержание карбонильных групп пропорционально концентрации озона и времени реакции t

зависимость [С=0]г-t повторяет вид функции [03] i-I. Наибольший интерес вызывает вид зависимости [С=0] г- I на расстояниях меньших 1 мкм, о которой метод нарушенного полного внутреннего отражения в его современном оформлении, к сожалению, информации не дает.

Суждение о функции распределения можно сделать по особенностям кинетики реакции озона с полимерными пленками разной толщины [37]. Было показано, что реакция озона с поверхностью полимера протекает на несколько порядков быстрее, чем реакция в объеме, и соответственно скорость накопления функциональных групп в реакции с поверхностью больше. На рис. 10 представлены зависимости эффективной скорости поглощения озона от толщины образца. Отрезки, отсекаемые на оси ординат, позволяют найти скорость реакции на поверхности, а угловые коэффициенты - скорость реакции в объеме. Детальный анализ этого явления показал, что в условиях опыта константа скорости реакции адсорбированного озона с ПС при 18° йад(.=0,05 л/моль-с, в то время как в объеме &об=0,22 л/моль * с [38]. Разница в скоростях обусловлена относительно большей концентрацией озона на поверхности за счет физической адсорбции. Было показано, что адсорбция озона на ПС приближается к идеальной и хорошо описывается известными закономерностями, в частности при температурах, близких к комнатной, адсорбция подчиняется закону Генри [39]

Средняя теплота адсорбции составляет 13,4±0,8 кДж/моль. В то же время растворимость озона в приповерхностных участках полимера близка или несколько меньше растворимости в соответствующих жидкостях [37]

Рис. 13 Рис. 14

Рис. 11. Плотность кристаллов ПЭ р как функция привеса от кристаллов в атмо сфере озона (1) и зависимость привеса от времени обработки (2)

Рис. 12. Гель-хроматограмма раствора, полученного после обработки кристаллов Ш озоном в течение 121 ч (т - относительное время удерживания (число пульсацш насоса), п - показатель преломления)

Рис. 13. Изменение содержания геля (Г) во времени при действии озона на пленю из атактического ПП при 1 (1), 19 (2), 39 (3) и 56° (4)

Рис. 14. ИК-спектры озонированных кристаллов ПЭ до (- ?) и после обработки водным раствором NaOH (2)

Таким образом, при действии озона на полимеры реакция в начальном периоде протекает главным образом на их поверхности.

Этот вывод хорошо согласуется с наблюдаемыми зависимостями скорости реакции и концентрации свободных радикалов от величины поверхности и с отсутствием связи с массой образцов [37]. В стандартных опытах газовый поток, содержащий озон, проходил через цилиндрически слой порошка полимера, например ПС, высотой h со скоростью v (л/с) Постоянство скорости потока газа достигалось подбором реактора небольшого сечения (0,6-1,2 см). Диффузия озона поверхности полимера при этом не лимитировала скорость реакции. Объем газовой фазы при прохождении слоя h оставался постоянным, поскольку концентрации 03 были малы. В этой серии опытов скорость подач газовой смеси и количество полимера подбирались так, чтобы концентрация озона на выходе из реактора была заметно меньше, чем на входе.

После прохождения слоя h концентрация озона в газе уменьшается и

составляет

где s - удельная поверхность', м2/г, р - навеска ПС, г, р» - коэффициент пересчета от объемной концентрации [03]г (моль/л) к поверхности.

Страницы: 1, 2


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  бесплатно рефераты скачать              бесплатно рефераты скачать

Новости

бесплатно рефераты скачать

© 2010.