бесплатно рефераты скачать
  RSS    

Меню

Быстрый поиск

бесплатно рефераты скачать

бесплатно рефераты скачатьДиплом: Установки погружных центробежных насосов (УЭЦН)

Двигатель фирмы отличается конструкцией – число пазов ротора и статора 18 и 23 соответственно, у других соответственно 18 и 16. Двигатели очень чувствительны к температуре, имеют малый температурный запас. Очень важна скорость обливающей их жидкости, фирма специально оговаривает диаметры скважин, в которые ставят ее двигатели. Фирма ODI предусматривает регуляторы частоты вращения двигателя и считается, что плавный пуск защитит двигатель, хотя есть вероятность того, что высокий ток на отдельных фазах может выбить пробки. В общем. Технические характеристики у двигателей фирмы ODI ниже, чем у отечественных двигателей. Фирма ODI скопировала советские протекторы ГД и 1Г51. Она использует к гидрозащите вихревые газосепараторы KGV и RGV, если объем свободного газа на приеме достигает 10%. Используются для определения влияния повышенного содержания газа на работу насоса (рабочие характеристики вихревых газосепараторов). Фирма ODI не является лучшей фирмой, представляющей на мировом рынке погружные центробежные насосы, но и не является плохой фирмой. Более конкретно о технических данных насосов фирмы ODI представлено в приложении. При разработке конструкции ступеней насосов фирма уделяет особое внимание проблеме защиты от абразии. 1.В ODI используется особая конструкция диффузора во всех ступенях насосов 55 и 70 серий для того, чтобы исключить попадание песка в область опорной втулки. Конструкция ступени фирмы ODI представлена на рис.1.4. 1 – балансная гидравлическая конструкция устраняет необходимость балансных отверстий; 2 - пьедестальная конструкция позволяет плавный проток жидкости в рабочее колесо; 3 – поскольку в нормальном режиме рабочее колесо давит на опору сверху, такая конструкция препятствует попаданию песка в область между втулкой рабочего о поры диффузора; 4 – две опоры с феноловыми шайбами уменьшают радиальную нагрузку и увеличивают продолжительность службы шайб. 1.4.Аанализ работы ЭЦН.. 1.4.1.Анализ фонда ЭЦН по АО “Сургутнефтегаз” Таблица 1.1.

состояние

всего

Т И П О Б О Р У Д О В А Н И Я

ЭЦН5-20

ЭЦН5-30

ЭЦН5-80

ЭЦН5-125

ЭЦН5М-50

ЭЦН5-250

ЭЦН5А-250

ЭЦН5А-400

ЭЦН5А-500

ЭЦН5А-16

ЭЦН5А-25

Центрилифт

ODI

ВНН

ЦУНАР

прочие

Спущено в скважину

7769

302

27

1535

843

3891

360

148

73

33

17

6

105

387

42

0

0

В работе

6857

221

25

1372

768

3372

333

139

65

31

8

2

105

375

41

0

0

В простое

912

81

2

163

75

519

27

9

8

2

9

4

0

12

1

0

0

1.4.2 Анализ фонда скважин. 1.4.3. По подаче. За последние годы было выпущено около 1042 насосов типа ЭЦН, из них : 2,5% - ЭЦН 20 38,9% - ЭЦН 50 15,0% - ЭЦН 80 12,1% - ЭЦН 125 1,7% - ЭЦН 160 7,6% - ЭЦН 200 7,3% - ЭЦН 250 2,5% - ЭЦН 360 11,3% - ЭЦН 500 Таблица 1.2.

Типоразмер

Фонд

на 1.01.97

Типоразмер

Фонд

на 1.01.97

ЭЦН 3025ЭЦН 20076
ЭЦН 50389ЭЦН 25073
ЭЦН 80150ЭЦН 36025
ЭЦН 125121ЭЦН 500113
ЭЦН 16017Всего989
Импортного производства: Таблица 1.3.

Типоразмер

Фонд

на 1.01.97

Типоразмер

Фонд

на 1.01.97

R – 36RA – 161
RC – 59RA – 221
RA – 75R – 322
R – 96R – 3210
RC – 127Всего ODI53
R - 146
1.4.4.По напору. По напору насосы распределились следующим образом: 35,7% - напор 1300 метров 17,8 – напор 1200 метров напор 1400 метров напор 1700 метров напор 900 метров напор 750 метров напор 100 метров В настоящее время растет необходимость в напоре 1300, 1700, 1800 метров с подачей 30.50 кубических метров. 1.5. Краткая характеристика скважин Скважины бурились на месторождениях кустовым способом, все наклонно- направленные. Средняя глубина до 3000 метров. Угол наклона скважины до 45. Глубина спуска насоса колеблется в пределах от 1200 до 1700 метров. Динамический уровень: -самый малый – устье; -самый большой – > 1000 метров. Динамический уровень в основном колеблется в пределах от 0 до 800 метров. В настоящее время наблюдается все большее снижение уровня нефти в скважинах месторождений, увеличение числа скважин с динамическим уровнем больше одного километра. Распределение фонда УЭЦН по динамическим уровням за 1996 год представлено в таблице 1.4. Таблица 1.4.

0-200

201-400

401-800

801-1000

>1000

всего

действ.

фонд.

193

152

389

166

115

1015

1115

17,3%

13,6%

34,9%

14,9%

10,3%

91,0%

100%

1.6.Анализ неисправностей ЭЦН. На предприятиях используются как модульные, так и немодульные насосные установки. К неисправностям насосных установок можно отнести следующие неисправности: - реже всего выходит из строя гидрозащита, основной поломкой является прорыв резиновой диафрагмы; - двигатели выходят из строя из-за пробоя статора нижнего или верхнего оснований, а также коррозии корпуса; - насос выходит из строя чаще всего из-за засорения мехпримесями, быстро изнашивается вал насоса. Распределение отказов УЭЦН по укрупненным причинам за 1997 год представлен в таблице 1.5. Таблица 1.5.
причиныНГДП
Нет подачи200
R - 01020
Клин 15
Негерметичность НКТ32
прочие48
ВСЕГО1315
Причины отказа погружных насосов выглядят следующим образом: Таблица 1.6.
Причины отказа1996 г.1995 г
1Мехповреждение кабеля7169
2Засорение мехпримесями162118
3Агрессивная среда17
4Негерметичность НКТ147
5Несоответствие кривизны627
6Некачественное глушение22
7Электроснабжение36
8Нарушение э/колонны12
9Некачественный монтаж2965
10Полет ЭЦН71
11Комплектация несоотв. заявке2618
12Бесконтрольная эксплуатация3935
13ГТМ174
14Причина не выявлена НГДП5953
15Прочие91-
Итого по вине НГДП528414
16Брак ремонта кабеля712
17Брак ремонта ПЭД98
18Брак ремонта гидрозащиты14
19Брак ремонта насоса1-
20Скрытый дефект оборудования3113
21Причина не установлена ЭПУ31
Итого по вине ЭПУ5238
НДП + ЭПУ
Спорные
Заводской брак514
Итого отказов585466
Из таблицы видно, что самым значительным техническим фактором, влияющим на работу установок ЭЦН. И являющимися причинами выхода из строя можно назвать мехповреждения кабеля, засорение примесями, некачественный монтаж, а также несоответствие кривизны ствола скважины, и бесконтрольное эксплуатация. Отсюда следует, что забивание мехпримесями является важным фактором влияющим на срок службы насоса, а борьба с ними должна привести к увеличению межремонтного периода установки. За 1997 год межремонтный период и наработки на отказ имеют следующие значения: Таблица 1.7.

Эксплуат.

фонд

Действ.

фонд

Отказы

Наработка

на отказ

Кол-во

ремонтов

МРПСредний дебетОбводненность
1995199619951996199519961995199619951996199519961995199619951996
15761431116811151172131526426612261224310310114.5122.689,090,4
1.7.Анализ аварийного фонда по НГДУ «Лянторнефть» В 1997 году произошло 60 полетов на 60 скважинах оборудованных установками электроцентрированных насосов. За прошедшие 5 лет наметилась тенденция увеличения количества аварий по фонду УЭЦН. В отчетном году аварийность повысилась на 16 скважин, по сравнению с аналогичным периодом 1996 года. Большая часть полетов произошли в результате расчленения фланцевых соединениях УЭЦН – 48%. Здесь следует выделить обрывы по шпилькам между секциями насоса – 25% и метод ПЭД и протектором гидрозащиты – 10%. Следующая группа обрывов – обрывы по НКТ. Основная доля обрывов приходится на нижнюю и верхнюю часть колонны НКТ, соответственно – 44% и 38%. Все остальные аварии относятся к категории частных случаев. Последняя большая группа аварий – это аварии по причине слома по телу узлов УЭЦН. По данной причине 4 полета получено в результате слома по телу корпуса секций насосов, 3 – по корпусу гидрозащиты, 1 – по телу ловильной головки. Сломы по «шейки насосов» возросли с 1 полета в 1996 г до 5 в 1997 году. Проводя анализ эксплуатации аварийного фонда скважин УЭЦН достаточно четко просматривается влияние осложняющих факторов на работу УЭЦН ставших причиной полета на этих скважинах. В первую очередь, львиная доля полетов получена на таких пластах, как А 4-5 и А 2-3, где наблюдается интенсивный вынос мехпримесей и высока степень коррозии. Высокое содержание мехпримесей в добываемой жидкости наблюдается практически по всем скважинам аварийного фонда, особенно на момент запуска и первых дней эксплуатации. Более того по ряду скважин в период работы содержание мехпримесей не только остается на одном уровне, но и увеличивается. Снижение выноса мехпримесей говорит о том, что установка начала снижать свою производительность из-за износа рабочих органов насоса. Основными причинами аварий являются следующие факторы: 1.Повышенное содержание мехпримесей в добываемой жидкости как после ремонта, так и в процессе эксплуатации, что вызывает интенсивный износ оборудования, что в свою очередь повышает вибрационные нагрузки. 2.Некачественные крепежные материалы, применяемые при монтаже УЭЦН, которые не выдерживают вибрационные нагрузки в процессе работы. Монтаж зачастую проводится крепежными материалами не соответствующими ГОСТ. 3.Увеличение полетов 1997 году связано также низким уровнем обеспечения нефтепромысловым оборудованием, в результате чего не обновляется парк подземного оборудования. 4.Недостаточным контролем со стороны технических служб ДАОЗТ за режимом работы скважин. 5.«Спутник». Предлагаемые меры по сокращению аварийности: 1.Повышать контроль за работой скважин, особенно по пластам А 4-5 и А 2-3. Здесь необходимо 1 раз в месяц отбирать пробу добываемой местности на анализ содержания мехпримесей (по пластам А 4-5 и А 2-3 2 раза в месяц), 2 раза в месяц (в начале и в конце) контролировать УЭЦН по динамическому уровню. 2.Производить спуск УЭЦН на заданную глубину (7-10 метров) только с замером НКТ, что исключит попадание установки в зону повышенной кривизны. 3.Рассмотреть вопрос о приобретении НКТ с антикоррозийным покрытием для спуска в скважину коррозийного фонда. 4.Увеличить процент обновляемости парка подземного ремонта. 5.При ПДС производить зачистку резьбы труб и муфт перед свинчиванием, более качественно проводить отбраковку НКТ по износу резьбовых соединений. 6.Возбновить работу ПДК по авариям, более детально подойти к расследованию причин полетов. Подробное распределение отказов представлено в приложении 5. 2. ПАТЕНТНАЯ ПРОРАБОТКА 2.1. Патентная проработка 1. М.М. Трусов, В.Я. Райт, и др. Авторское свидетельство № 597785, № 21, 1976 г. с.4. «Скважинная насосная установка». Изобретение относится к гидромашиностроению и может быть использовано в конструкциях скважинных насосных установок, предназначенных для откачивания сред, содержащих механические примеси. Цель изобретения - уменьшение габаритов и металлоемкости установки, а также повышение степени очистки перекачиваемой среды. Поставленная цель достигается тем, что в скважинной насосной установке, содержащей центробежный насос, размещенный под ним электродвигатель, установленный на выходе насоса гидроэлеватор с наружным кожухом и камерой смещения и деформируемый пакер, последний расположен выше гидроэлеватора, в наружном кожухе гидроэлеватора выполнены отверстия и его камера смешения сообщена с областью всасывания насоса посредством упомянутых отверстий, а электродвигатель снабжен спиральной направляющей на его наружной поверхности. 2.О.М. Юсупов, М.Д. Валеев и др. Авторское свидетельство № 1019111, № 19, 1982 г., с 4. «Способ запуска центробежного насоса». Изобретение относится к гидромашиностроению и может быть использовано при эксплуатации центробежных насосов для подъема жидкости из скважины. Цель изобретения - упрощение технологии запуска. Указанная цель достигается тем, что согласно способу запуска центробежного насоса, откачивающего газированную жидкость и установленного в скважине на колонне подъемных труб, подключенной в верхней части к выкидной линии и затрубному пространству скважины, включающему создание положительной разности давлений на выходе и выходе насоса, раскрутку ротора последнего в турбинном режиме жидкостью, перетекающей из затрубного пространства в колонну подъемных труб под действием созданной разности давлений, и включение электродвигателя насоса, предварительно отключают колонну труб от выкидной линии и затрубного пространства, а создание положительной разности давлений осуществляют путем выпуска газа на верхней части колонны труб. 3. Ю.Г.Вагапов, А.А.Ланкин и др. Авторское свидетельство № 808698, № 8, 1981 г., с.4. «Погружной электроцентробежный агрегат». Изобретение относится к насосостроению и может найти применение в погружных электроцентробежных насосах, предназначенных, например, для добычи нефти из скважин. Цель изобретения – обеспечение возможности обратной прокачки жидкости через насос и измерения давления на приеме насоса. Указанная цель достигается тем, что насос дополнительно содержит муфту, закрепленную над обратным клапаном, в которой размещен специальный груз со штоком в нижней части, проходящим через отверстие седла клапана, причем груз имеет сквозное отверстие. 4. Л.А.Чернобай, А.М. Романов и др. Авторское свидетельство № 1028893, № 26, 1981 г., с 4. «Погружной центробежный насосный агрегат». Изобретение относится к гидромашиностроению, более конкретно к конструкциям насосных установок для подъема минерализованных жидкостей, например обводненной нефти, из скважины. Цель изобретения – повышение долговечности при использовании агрегата для перекачивания обводненной нефти. Поставленная цель достигается тем, что в погружном центробежным агрегате излучатель снабжен расположенным по обе стороны от него кольцевыми камерами, сообщенными с отверстиями. 5. С.А. Войтко, А.А. Гунин и др. Авторское свидетельство № 1083696, 1981 г., с.3. «Скважинная насосная установка». Изобретение относится к области гидромашиностроения и может быть использовано в конструкциях насосных установок, предназначенных для откачивания жидкости с механическими примесями из скважин. Цель изобретения – в повышении надежности и уменьшения габаритов установки. Поставленная цель достигается тем, что в скважинной насосной установке, содержащей установленный на колонне подъемных труб насос, размещенный на выходе последнего пескоотстойник, снабженный в нижней части нормально открытым клапаном, и обводную трубу, нижний конец которой непосредственно сообщен с выходом насоса, а верхний через обратный клапан – с полостью колонны труб, обводная труба расположена внутри пескоотстойника, а нормально открытый клапан выполнен подпружиненным и имеет внутреннюю полость, уплотненную относительно полости колонны труб и гидравлически связанную с выходом. 2.2.Обоснование выбранного прототипа. Большое значение имеют погружные центробежные насосы для нефтедобывающей промышленности. Скважины, оборудованные установками погружных центробежных электронасосов, выгодно отличаются от скважин, оборудованных глубинонасосными установками. Применение такого оборудования позволяет вводить скважины в эксплуатацию сразу же после бурения в любой период года, без больших затрат времени и средств на сооружение фундаментов и монтаж тяжелого оборудования. Спуск электронасоса в скважину отличается от обычного для промыслов спуска НКТ лишь наличием кабеля и необходимостью его крепления к трубам, сборка же самого электронасоса на устье скважины очень проста и занимает по нормам не более 2-3 часов. Характерной особенностью погружных центробежных насоса является простота обслуживания, экономичность, относительно большой межремонтный период их работы. Насосный агрегат, состоящий из погружного центробежного насоса, двигателя и гидрозащиты спущен на колонне НКТ в скважину. Насосный агрегат откачивает пластовую жидкость из скважины и подает ее на поверхность по колонне НКТ. Кабель в сборе, обеспечивает подвод электроэнергии к электродвигателю, крепится к гидрозащите, насосу и колоне НКТ хомутами. Насос погружной, центробежный, модульный, многоступенчатый, вертикального исполнения. Базовой моделью для моего усовершенствования является УЭЦН 5 50-1300, так как на основании проведенного анализа полетов УЭЦНМ в АО «Сургутнефтегаз» видно, что влияние вибрации в модульных насоса ЭЦН приводит к обрыву болтов во фланцевых соединениях, не только самого верхнего, но и ниже. На основании этого предлагается конструкция противополетного устройства, устанавливаемого на каждое фланцевое соединение насосного агрегата, описанное далее. 2.3.Суть модернизации. Страховочные муфты предназначены для предотвращения падения установок в скважину при ее расчленении по фланцевому соединению. Устанавливаются страховочные муфты между модуль-секциями насоса (кроме соединения входной модуль – модель-секция) и между модуль-головкой и модуль секцией. Если применяется противополетная головка. Монтаж-демонтаж установок производится согласно «Инструкции по монтажу- демонтажу на устье скважин погружных электроцентробежных насосов для добычи нефти» со следующими дополнениями. После соединения верхней и нижней секций, приподнять агрегат и установить на фланцевом соединении страховочную муфту в следующей последовательности: 1.Вывинтить стягивающие винты из корпуса муфты для рассоединения двух частей. 2.Установить обе части муфты на фланцевое соединение винтами вниз так, чтобы срезанная плоскими часть муфты находилась под кабелем. 3.Соединить часть муфты винтами при помощи шестигранного ключа, и расклинить винты со стороны разрезанной части, для предотвращения самопроизвольного развинчивания. Аналогично установить муфту при наличии многосекционного насоса между всеми модулями. Демонтаж муфты осуществить следующим образом: 1.Сжать плоскогубцами расклиненные концы винтов. 2.Вывинтить винты из корпуса страховочные муфты, разъединить части муфты и снять их. 3. РАСЧЕТНАЯ ЧАСТЬ 3.1.Расчет ступени ЭЦН 3.1.1.Расчет рабочего колеса. При расчете ступени погружного центробежного насоса всегда известны подача и напор насоса, скорость вращения вала и диаметр обсадной колонны скважины для работы в которой предназначен насос. (1) Подача, Q – 30 м\сут. Напор, H – 1300 м. Частота вращения вала, n – 3000 об\мин. Внутренний диаметр корпуса насоса, d – 82 мм. Внутренний диаметр корпуса ступени, d – 76,5 мм. После того, как установлен внутренний диаметр ступени, можно приступать непосредственно к расчету проточной части рабочего колеса и других размеров. Для этого необходимо выполнить следующее: а) Определить наибольший внешний диаметр рабочего колеса D max D2max=Dвн.–25, (3.1.) где, S – радиальный зазор между внутренней стеной корпуса ступени D вн. и наибольшим диаметром рабочего колеса D max. Этот зазор выбираем в пределах S=2-3 мм б) Определим приведенную подачу рассчитываемой ступени: Qприв.=2800( 90 )3 Q, (3.2) n D2max где, 2800 – приведенная скорость вращения единичного насоса в об\мин. 90 – наибольший внешний диаметр рабочего колеса единичного насоса в мм. n – число оборотов вала, об\мин. Q – рассчитываемая подача, л\с. в) Определяем диаметр втулки при входе в рабочее колесо: Dвт.=Кdвт*D2max, (3.3) где, K d вт – коэффициент, соответствующий полученному значению Q прив, 0,31. После определения диаметра втулки необходимо проверить возможность размещения вала насоса. При этом должно быть соблюдено условие: D = d + 2 δ вт., где, D вт – диаметр втулки, мм; D в – диаметр вала насоса, мм; δвт. – толщина ступени втулки (для погружных центробежных насосов с диаметром корпуса 92-150, можно принять Sвт=2-4 мм); г) Определяем наибольший диаметр входных кромок лопастей D1 max по уравнению: D1max=D2max KD1max (3.4) где, КD1 max – коэффициент, определенный для Q прив, 2,3; в) Определяем диаметр входа D в рабочее колесо: D0=КD0*D1max, (3.5) К – коэффициент диаметра входа в рабочее колесо для данного Qприв, 0,96; Диплом: Установки погружных центробежных насосов (УЭЦН) е) Определяем наименьший диаметр входных кромок лопастей рабочего колеса D2 min: D2min=√D2вн.ст.–1*(D2max)2*Fприв 0,78590 (3.6) где, Fприв – приведенная площадь без лопаточного кольца между стенкой корпуса ступени Dвн.ст. и ободом верхнего диска рабочего колеса D2 min. Находят для Q Fприв = 1600 мм. ж) Определяем наименьший диаметр входных кромок лопастей D1min: D1min= D2max KD1min (3.7.) где, KDmin – коэффициент определяемый для Qприв. з) Определяем высоту канала b на выходе из рабочего колеса. в=Кb2*D2max, (3.8) где, Кb2 – коэффициент, определяемый для Q, 0,016; и) Определяем высоту канала b1 на входе в рабочее колесо. b1=Kb1*D2max, (3.9) Кb1 – коэффициент, определяемый для Q, 0,036; к) Напор ступени определяют по коэффициенту окружной скорости Кv2окр., пользуясь уравнением: Kv2окр.=V2окр.max (3.10) 60√2gH где, V2окр. – окружная скорость на диаметре D2max рабочего колеса; Кv2окр.= πD2ср.*n 60√2gH (3.11) где, K v2окр. – коэффициент окружной скорости, Кv2окр. = 1,33; D2ср. – внешний диаметр рабочего колеса, мм; п – число оборотов вала, об/мин; g – ускорение свободного падения, м/с; л) Определяем коэффициент быстроходности ступени; м) Определяем конструктивные углы β1 и β2 от быстроходности ступени. Расчет колеса: а) D2max=Dвн.ст. – 2S В2max=76,5-2*2 D=72,5 мм; б)Qприв = 2800 (90 )3 *Q; n D2max Qприв = 2800 ( 90 )3 * 0,347; 3000 72,5 Qприв=0,6196 л\с; в) d вт.=Кdвт*D2max dвт=0,31*72,5 dвт=22,475 мм; dвт=dв + 2δвт. dвт=17+2*2/5 dвт= 22 мм; г)D1max= D2max KD1max D1max=72,5 2,3 D=31,52 мм; д) D0=К0*D1max; D0=0,96*31,52; D0=30,26 мм; е) D2min=√D2 вн.ст. - 1 (D2max)2 *Fприв. 0,785 90
D2min=√76,52 – 1 (72,5)2 *1600 0,785 90 D2min=67,3 мм; ж) D1min= D2max KD1min D1min= 72,5 2,2 D1min=32,95 мм; з) b2=Кb2 * D2max; b2=0,016*72,5 b2=1,16 мм; и) b1=Кb1*D2max b1=0,036*7,25=2,61 мм; к) Н=(πDср.* Н)2 * 1 60*КН2 2g Н=(3,14*0,0725*3000) * 1 60*1,33 2*9,81 Н=3,73 м; л) Hs=60; м) β1=27; β2=53; 3.1.2. Расчет направляющего аппарата. Осевой направляющий аппарат ступени погружного центробежного насоса рассчитывают следующим образом: а) Определяем приведенную подачу и по ней определим приведенную, а затем действительную высоту рассчитываемой ступени: lприв=22; l=lприв.*D2max (3.12) 90 б) Определяем высоту междулопаточных каналов: b3пр.=90*b3 (3.13) D2max где, b3пр.- приведенная высота от приведенной подачи, 3.3; b3пр.= b3прив.* D2max 90 в) Находим диаметр диафрагмы D направляющего аппарата: F”прив.=0,7859(D2вн.ст.-D2)*(90)2 (3.14) D2max где, F”прив-приведенная площадь кольца внутренней стенкой корпуса ступени и диаметром ступени, 800; D3=√D2 вн.ст. – F’’прив. * (D2max)2 0,785 90 Расчет направляющего аппарата: а) l=l прив. * D2max 90 l=22*72,5 90 l=17,7 мм; б) b3=b3прив.*D2max 90 b3=3,3 * 72,5 90 b3=2,66 мм; в) D3=√D2 вн.ст. F’’ (D2max)2 0,785 90 D3=√76,52 – 800 (72,5)2 0,785 90 D3=72,04 мм; КПД ступени 0,38 3.2.Проверочный расчет шпоночного соединения. Шпоночное соединение проверяется по боковым граням шпонки под действием окружного усилия, передаваемого рабочему колесу: σ=2Mр.к.D(h-t)*l (3.15) где, Мр.к. – момент передаваемый рабочему колесу. D – диаметр вала; t - глубина паза по валу; l - длина посадочной части рабочего колеса; h – высота шпонки. Момент, передаваемый рабочему колесу определяется из мощности передаваемой двигателем насосу. Мощность двигателя выбирают по основным параметрам насоса. К основным параметрам относятся подача, напор, КПД. Для определения напора необходимо определить количество ступеней находящихся в насосе. Количество ступеней можно определить следующим образом. Существует 5 видов секций отличающихся длиной, в зависимости от длины в каждой секции располагаются различное число ступеней. Для расчета возьмем следующий насоса: ЭЦН М-5-50- 1300 состоящий из 2-х секций № 2 и № 5, в некоторых расположено 264 ступени, в секции № 2 расположено 73 ступени, а в секции № 5 расположено 192 ступени. Длина одной ступени ЭЦН 50 - 24 мм. Ступени насоса в секциях располагаются в пределах: L=n*l (3.16) где, n – число ступеней; l - длина одной ступени; L = (72*24) + (192*24) L = 1728 + 4608 L = 6336 мм Длина одной ступени ЭЦН – 30 равна 17,5 мм, в секциях расположится: nр=L (3.17) lp где, np – число ступеней, рассчитываемого насоса в двух секциях; lp – длина одной ступени ЭЦН – 30. np=6336 17,5 np=362 ступени Значит в секции № 2 расположится 99 ступеней, а в секции № 5 расположится 263 ступени. Напор одной ступени равен 3,73 м. Общий напор равен произведению количества ступеней на напор одной ступени: H=N*h (3.18) где, h-напор одной ступени H=362*3,73 H=1350,26 м H=1350 м. Гидравлическая мощность насоса равна: Nг=Q*H*j (3.19) 102 *η где, Q – подача насосной установки; H – напор насоса j-относительный удельный вес жидкости η-КПД насоса; Q = 30 м3 /сут =3,5*10-4 м3 /с Н = 1350 м j=1900 кг/м3 η=0,43 Nг=3,5*10-4 *1350*1300 102*0,43 Nг =15 КВт Мощность двигателя должна быть: Nд ≥ 1,05 Nг, (3.20) где Nд – мощность двигателя; Nг – гидравлическая мощность насоса; Nд = 1,05*15 Nд=15,8 КВт По (1) подбираем двигатель, соответствующий условию отраженному в формуле (3.20): Двигатель ЭД 20-103 Мощность двигателя Nд=20 КВт. Момент, передаваемый на рабочее колесо: Мр.к.=Nдв. (3.21) Nz*n где, Nдв. – мощность подобранного двигателя; Nz – число рабочих колес, установленных в насосе; n – число оборотов вала насоса; Nz =362 ступени n=2840 об/мин=47,33 об/сек Мр.к. = 20*103 362*47,33 Мр.к.=1,17 Вт. Расчет шпонки на смятие производится по формуле (3.15): σсм.= 2Мр.к. D (h-t)*l Мр.к.=1,17 Вт. D=17мм=0,017 м l=10мм=0,01 м h=1,6мм=0,0016 м t=0,8мм=0,0008 м σсм= 2*1,17 0,017(0,0016-0,0008)*0,01 σсм.=17205881 Н/м2 σсм.=17,2 Мпа Шпонка представляет собой кружок твердый, вытянутый, изготовленный из латуни марки П63. Сопротивление латуни этой марки разрыву: σв=75-95 кгс/мм2 σв=750-950 МПа Сопротивление смятию находится в пределах ½ σв, запас прочности на смятие нас удовлетворяет. 3.3.Проверочный расчет шлицевого соединения. Шлицевое соединение проверяется на смятие по формуле: σсм.=Т (3.22) 0,75z Асм*Rср. где, Т – передаваемый вращаемый момент; z - число шлицев; Ам – расчетная поверхность смятия; Rср. – средний радиус шлицевого соединения. Средний радиус шлицевого соединения определяется как: Rср.=0,25 (D+d) (3.23) где, d-диаметр впадин шлицев, ; D-максимальный диаметр шлицев; D=0,017 м d=0,0137 м Rср.=0,25 (0,017+0,137) Rср.=0,007675 м Расчетная поверхность смятия равна: Асм.=(D-d-2ƒ)*l (3.24) 2 где, ƒ-фаска на шлицах; l-длина контактирующей поверхности шлицевого соединения; ƒ=0,003 м l=0,04 м Асм.= (0,017-0,0137 – 2*0,0003)*0,04 2 Асм.=0,000042 м2 Т=Nдв (3.25) n где, Nдв.- мощность двигателя; n - число оборотов вала; Nдв.=20 КВт=20000Вт n=2840 об/мин=47,33 об/сек Т=20000 47,33 Т=422,6 Н*м σсм.= 422,6 0,75*6*0,000042**0,007675 σсм=291308000 Н/м σсм=291,308 Мпа. Вал насоса изготовлен из высоколегированной стали. [σсм]вала=500-1100 МПа. Следовательно, шлицевое соединение, рассчитанное нами и проверенное на смятие удовлетворяет нашему насосу. 3.4.Расчет вала ЭЦН Различают валы прямые, коленчатые и гибкие. Наибольшее распространение имеют прямые валы. Коленчатые валы применяют в поршневых машинах. Гибкие валы допускают передачу вращения при больших перегибах. По конструкции различают валы и оси гладкие, фанонные или ступенчатые, а так же сплошные и полые. Образование ступеней на валу связано с закреплением деталей или самого вала в осевом направлении, а также с возможностью монтажа детали при подсадках с натягом. Полые валы изготавливают для уменьшения массы или в тех случаях, когда через вал пропускают другую деталь, подводят масло и пр. Прямые валы изготавливают преимущественно из углеродных и легированных сталей. Валы рассчитывают на прочность. Расчет вала на прочность. Во время работы вал насоса подвергается воздействию крутящего момента, осевой сжимающей нагрузки на верхний торец вала и радиальной нагрузки. Радиальная нагрузка на вал вызывается насосным расположением валов секций насоса и протектора и возможность неточного изготовления шлицевого соединения. Предварительно оценивают средний диаметр вала по внутреннему диаметру шлицев d концентрационных напряжений и изгиба вала: τкр=Mкр.max=Mкр.max (3.26) Wр=0,2*d3 вн. где, dвн.=Мкр.max (3.27) 0,2*τкр Максимальный крутящий момент: Мкрmax=Nmax (3.28) w где, N max– приводная мощность двигателя, 13 т; w= π*n - угловая скорость, сек; 30 п-частота вращения электродвигателя, об/мин. Напряжение на кручение определяем по пределу текучести материала σт. Допустимое касательное напряжение при кручении принимаем с коэффициентом запаса прочности η=1,5; τ=[τ]= τт = σт (3.18) η 2η Для вала насоса ЭЦН берем сталь 40ХН с пределом текучести τ=750 Мпа. Насосное соединение валов и некомпенсированные зазоры создают радиальную нагрузку в 60-130 кг.с, действующую на шлицевой конец вала насоса. Радиальная нагрузка Р, находится по формуле: Р1=K[3E*J*∆у] (3.29) C3 где, К – коэффициент, учитывающий компенсирующее влияние зазоров и равный 0,45-0,85; Е – модуль упругости материала вала, Па. J – момент инерции вала, принимаемый с учетом тела втулки. М; ∆у – стрела прогиба шлицевого конца вала, вызванная неспособнос- тью в сочленении насоса и протектора, принимается равным 25*10 м; С – расстояние от центра подшипника до середины муфты, м; Момент инерции вала: J=π*d4вн.*а*(D-dвн.)*( D+dвн.)*z (3.30) 64 где, а – ширина шлицы, м; D – наружный диаметр шлицев, м; z – число шлицев. Радиальная нагрузка на вал Р2, зависящая от неравномерной передачи крутящего момента шлицами малы и ею можно пренебречь. Пять работающих шлицев дают нагрузку, равную 0,2*Р, где Рокр.=2*Мкр.max (3.31) dср. где, D – средний диаметр шлицев. Р2=0,2*Рокр. (3.32) Изгибающий момент на шлицевом конце вала: Мизгб.max=(Р1+Р2)*b (3.33) где, b-расстояние от середины муфты или от точки приложения силы Р до проточки под стопорное кольцо, м. Мизг.max.=(Р1-Р2)*b. Зная момент изгиба и момент кручения, можно определить напряжение изгиба и кручения в опасном сечении вала (под проточку на стопорное кольцо). σизг.max=Мизг.max (3.34) Wx Wх=π*d4кр. (3.35) 32*D где, Wх- момент сопротивления в месте проточки под стопорное кольцо, м; dкр.-диаметр вала в месте проточки под стопорное кольцо, м; σизгб.min=Мизг.min (3.36) Wx Напряжение кручения τкр.=Мкр.max (3.37) Wp Wр=2*Wx – полярный момент сопротивления вала в месте проточки под стопорное кольцо; Эквивалентное напряжение находим по четвертной прочности: σэкв.=√σ2изг.max+3τ2 (3.38) По этой величине и пределу текучести материала вала устанавливается запас прочности с учетом статистических нагрузок: п=σт≥1,3 (3.39) σэкв Исходные данные: Приводная мощность двигателя N = 2000Вт. Частота оборотов двигателя п=2840 об/мин. Предел текучести материала вала σ=750 МПа. Модуль упругости материала вала У=20*10 МПа. По данной методике произведем расчет с цифровыми значениями: Момент инерции вала: J= π*d4вн.+ а (D-dвн) * (D +dвн)2*z 64 J= 3,14*0,0124 + 0,0035 (0,017 – 0,012)*(0,017+0,012) 2*6 64 J=2,3*10-10 м; Нагрузка создаваемая работающими шлицами: Р2=0,2*Рокр. Р2=0,2* Mкр.max dср Р2=0,2 * 2*67,28 0,0155 Р2= 1736,2584. Максимальный изгибающий момент в месте проточки под стопорное кольцо: Мизг.max= (Р1+Р2)*b Мизг.max=(258,957+1736,258)*0,035 Мизг.max=69,83 Н*м. Минимальный изгибающий момент в этом сечении: Мизг.min=(Р1-Р2)*b Мизг.min=(258,957-1736,258)*0,035 Мизг.min=51,74 Н*м; Напряжение изгиба в опасном сечении: σизг.max=Мизг.max Wx где, W= π*d4кр 32*D W=3,14*0,01574 32*0,017 W=3,51*10-7 м3; Это мы нашли осевой момент сопротивления вала: σизг.max.= 69,83 3,51*10-7 σизг.max =198,945Мпа Минимальное напряжение изгиба σизг.min.= 51,71 3,51*10-7 σизг.min.= 147,321 МПа Напряжение кручения: τкр=Мкр.max Wp где, Wр=2*Wх Wр=2*3,51*10-7 Wр=7,02*10-7 м Это мы нашли полярный момент сопротивления вала τкр.= 67,28 7,02*10-7 τкр.=96,114 Мпа; Эквивалентное напряжение: σэкв=√σ2 изг.max + τкр2 σэкв=√198,9452+3*96,1142 σэкв.=259,409 Мпа; Запас прочности по пределу текучести: п= σт ≥ 1,3 σэкв п= 750 259,409 п=2,8; Из результатов расчетов видно, что вал из стали 40 ХН диаметром 17 мм со шлицем и с проточкой под стопорное кольцо выдерживает заданные нагрузки с коэффициентом запаса прочности п=2,8, который удовлетворяет условию 2,8>[1,4]. 3.5.Прочностной расчет 3.5.1.Прочностной расчет корпуса насоса Корпусы погружных центробежных насосов изготавливают из трубных заготовок точением или из холодных комбинированных труб повышенной точности длиной 2100, 3600 и 5000 мм. Корпус насоса будет рассчитываться в следующей последовательности. 1.Выбираем наружный диаметр и внутренний корпуса насоса. Dвн.=0,092 м, Dвн=0,08 м 2.Определяем предварительную затяжку пакета ступеней с учетом коэффициента запаса плотности верхнего стыка по формуле: T=πКρgНrвн.[1-Eк-Fк/2 (ЕкFк+Ена Fна)] (3.40) где К – коэффициент запаса плотности стыка; К=1,4 ρ - плотность воды; ρ=1000м/кг g – ускорение свободного падения; g = 9,8 м/с H- максимальный напор насоса; Н =1300 м r - внутренний радиус расточки корпуса насоса; r=0,04 м Ек- модуль упругости материала корпуса насоса; Ек=0,1х10 6Мпа Fк – площадь поперечного сечения корпуса насоса; Fк=1,62х10 -3 м 2 Ена- модуль упругости материала направляющего аппарата; Ена=1,45х10 5МПа Fна – площадь поперечного сечения направляяющего аппарата; Fна=6,08х10-4 м2 Т=3,14х1,4х1000х9,81х1160х0,042 [1-2,1х106 х1,62[10-3 /2(2,1х106 х1,62х10-3 +1,45х105 х6,08х10-4 ) ]=48256Н 3.Находим общее усилие, действующее вдоль оси корпуса по выражению: Q=Т+ρgНrвн 2 EкFк/2(ЕкFк+ЕнаFна)+G + πКρgНrвн (3.41) где Т – предварительная затяжка пакета ступеней, определенная по формуле (3.40) Т=48256Н G – масса погружного агрегата; G =20505 Н; Hmax - максимальный напор насоса; Нmax =3500 м Q = 268519Н 4.Вычисляем осевое напряжение в опасных сечениях корпуса по формуле σ=Q/Fк (3.42) где Q – общее усилие, действующее вдоль корпуса насоса, определенное по выражению (3.41) Q=268591 Н Fк – площадь ослабленного сечения корпуса по наружному диаметру трубы; Fк =1,24х10-3 м2 σz=268519/1,24х10-3=220МПа 5.Определяем тангенциальное напряжение в опасных сечения, по выражению: σ=pgHmaxrвн/S-MT/F’ (3.43) где S – толщина корпуса в опасном сечении; S=0,009 м M – коэффициент Пуассона; M=0,28 σт=142 МПа 3.5.2.Прочностной расчет винтов страховочной муфты. Расчет винтов на срез произведем по формуле: τ≤[τ] (3.44) где τ – напряжение среза действующее на винты страховочной муфты; [τ] – допускаемое напряжение среза. Допускаемое напряжение среза определяется по формуле: [τ]=0,4σт где σт – предел текучести материала винта, для стали 35 из которой изготовлены винты σт=360МПА. [τ]=0,4х360=144МПа Напряжение среза действующее на винты определяем по формуле τ=4S/пdхz (3.45) где S – сила среза действующая на винты; d – внутренний диаметр резьбы; d=0,0085 м; z –количество винтов, z=2; Находим силу среза по выражению S=mхg (3.46) где m – масса насосного агрегата m=709 кг g – ускорение свободного падения; g =9,8 м/с S=709х9,81=6955,29 кгм/с2 =6955,29 Н Определяем напряжение среза, действующее на винты страховочной муфты по формуле (3.45) τ=6955,29х4/3,14х0,00855 х2=61285468 Па=61,29 МПа. Прочностной рачсет винтов на срез является допустимой, так как 61,29<144 Коэффициент запаса прочности винтов определяем из выражения n=[τ]/ τ (3.47) где [τ] – допускаемое напряжение среза, [τ]=144 МПА τ – напряжение среза действующее на винты страховочной муфьы, τ=61,29 МПа П=144/61,29=2,35 Полученный коэффициент заппса прочности является достаточным. 3.5.3.Прочностной расчет корпуса полумуфты Расчет корпуса полумуфты будет рассчитываться на растяжение в опасном сечении. Расчет полумуфты в опасном сечении произведем по формуле: σ≤[σ] (3.48) где σ – сопротивление при растяжении действующее в опасном сечении полумуфты; [σ] – допустимое сопротивление при растяжении. Допустимое сопротивление при растяжении определяется из выражения σ=0,3σт (3.49) где σт – предел текучести материала для материала сталь 30 Л, из которого отлита полумуфта σт=240 МПа [σ]=0.3х240=72 МПа Определяем напряжение, получамемое давлением максимальной нагрузки на площадь по формуле: σ=S/F (3.50) где S – максимальная нагрузка действующая на полумуфту, определенная по формуле (3.46) S=6955,29Н F – площадь полумуфты в опасном сечении; F=5,68х10-4 м 2 σ=6955,29/5,68х10-4=12245228Па=12,25МПА Прочность полумуфты в опасном сечении является допустимой, так как 12,25 МПа<72 Мпа Коэффициент запаса прочности определяем из выражения П= [σ] /σ (3.51) где [σ] – допускаемое сопротивление при растяжении; [σ]=72 МПА σ- сопротивление при растяжении действующее в опасном сечении муфты; σ=12,25 МПА П=72/12,25=5,87 Полученный коэффициент запаса прочности является допустимым. 4. ЭКОНОМИЧЕСКИЙ ЭФФЕКТ На месторождениях, разрабатываемых и эксплуатируемых НГДУ “Сургутнефтегаз” дебет скважин по сравнению с прошлыми годами падает, что дает основанием использовать на скважинах электроцентробежные насосы с меньшей подачей. При эксплуатации скважин УЭЦН М-30-1300 повышается межремонтный период и наработка на отказ. Совершенствование электроцентробежного насоса с подачей 50 м/сут состоит в том, что в корпус электроцентробежного насоса с подачей на 50 м/сут мы ставим рабочие колеса и направляющие аппараты, рассчитанные на подачу 30 м/сут. Этим мы получаем насос с подачей 30 м/сутки для использования на малодебетных скважинах. За счет этого мы получаем экономию денежных средств, так, как не приходится запускать с заводов электроцентробежные насосы для малодебетных скважин. Экономический эффект ожидается за счет: -увеличение наработки на отказ; -уменьшение числа текущих ремонтов; -предотвращение затрат, связанных с закупкой УЭЦН-30 на заводах. Методика расчета экономического эффекта Экономический эффект определяется по формуле Эт=Рг-Зг (4.1.) Кр+Ен где, Рг – стоимостная оценка годовых результатов Зг – неизменные по годам годовые затраты; Кр – норма амортизации с учетом фактора времени Ен – норматив для приведения к расчетному году Стоимостная оценка годовых результатов: от количества ремонтов Рг1=(365365 ) *Срем. (4.2.) МРПб МРПсов. где, МРПб – базовый межремонтный период; МРПсов.–межремонтный период усовершенствованного оборудования Срем. – стоимость текущего ремонта Неизменные по годам годовые затраты: Зг=Иг+(Кр+Ен)*К (4.3) где, Иг – годовые текущие затраты К – капитальные затраты Годовые текущие затраты: К1=1,2 ( Зср. *L + 0,395 * Зср. * L) (4.4) 166 166 где, К1 – капитальные затраты, связанные с изготовлением рабочей ступени; Зср – средняя затрата L – длительность изготовления Капитальные затраты на материалы, примененные при изготовлении рабочей ступени: К2=m*c*Kи (4.5) где, m – масса материалов; c – стоимость материалов; Ки- коэффициент, учитывающий, что часть материалов расходуется при изготовлении. К=К1+К2 (4.6) К=n*(К1+К2) (4.7) где, -n - количество рабочих ступеней. Годовая прибыль, остающаяся в распоряжении предприятия: Пt=Bt – Ct – Ht (4.8) где, Bt – выручка от реализации продукции, полученной с применением мероприятий НТП, без акцизов и налогов на добавочную стоимость; Ct – себестоимость продукции; Ht – налоги, общая сумма. Срок возврата затрат: Т= К (4.9) П+А где, П – прибыль чистая, получаемая за счет реализации мероприятия за год; А – сумма амортизации за год. Исходные данные: Стоимость ЭЦН – 50-1300 – 1320400 руб Стоимость ЭЦН - 30-1300 – 18900000 руб m1 – масса рабочего колеса, изготовляемого из полиамида. m1=0,158 г С – стоимость полиамида С=1500000 руб за тонну m2 – масса направляющего аппарата, изготовляемого из полиамида. m2=320 г. Средняя заработная плата: Зср.=1800 руб Длительность изготовления рабочей ступени L=1 час Межремонтный период базовый: МРПб=316 суток Межремонтный период совершенствованного оборудования: МРПсов.=358 суток Стоимость текущего ремонта (одного): Т = 72 часа Среднесуточный дебит : Q=35 м/сут Стоимость нефти на внутреннем рынке: С = 500000 резв./тонну Себестоимость нефти: Ct=287274 руб/т Расчет экономического эффекта Стоимостная оценка годовых результатов: от количества ремонтов: Рг1= ( 365365 ) *Срем. МРПб МРПсов. МРПб=316 суток МРПсов.=358 суток Ср=1150000 резб. Рг1= (365365) *1150000 316 358 Рг1=156400 руб Рг2 берем из 40% от стоимости ЭЦН – 50-1300 и стоимости ЭЦн – 30-1300. Рг2=0,4*13204000+18900000=2418600 руб Рг=Рг1+Рг2 Рг=156400+24181600=24338000 руб Расчет затрат: Зг=Иг + (Кр+Ен)*К Иг=ΔР*Т*Q*Сп Сп3=55% от себестоимости 287274 руб/т Иг=0,136*3,0830,0*0,55*287274 Иг=1933928,5 руб Затраты на изготовление рабочей ступени К1=1,2 *(1,395 * Зср. *L) 166 Зср.=1800000 руб L=1 час К1=1,2 * 1,395 * 1800000*1 166 К1=18151,719 руб Затраты на материалы, примененные при изготовлении рабочей ступени: К2=m*С*Ки m=m1+m2 m=0,320+0,158 m=0,478 К2=0,478*10-3 *1500000*1,5=1075,5 руб К=112*19227,219 К=2153449 руб Зг=Иг + (Кр+Ен)*К Зг=1933928,5 + (1+0,1)*2153449 Зг=4292722,4 руб. Эффект рассчитывается для срока в 5 лет, срока амортизации оборудования типа УЭЦН Кр=0,1638 Ен=0,1 Эт=24338000 - 4292722,4 0,1638 + 0,1 Эт=7598647 руб Прибыль, остающаяся в распоряжении предприятия: Пt=Bt – Ct – Ht Формула (4.8) общая для расчета, ее можно разложить: Пт=Рг2Иг (4.10) где, Пт – прибыль без налогов Текущая чистая прибыль: Пч=0,65 * Пт Рг2=24181600 руб Иг=1933928,5 руб Пt=24181600 – 1933928,5 Пt=22247671 руб Пч=0,65* Пт Пч=0,65 * 22247671 Пч=14460986 руб. Срок возврата затрат Т = К П+А К=2153449 руб Пч=14460986 руб А=20% от К А=430689,8 руб Т= 2153449 14460986+430689,8 Т = 2153449 14891675 Т=0,15 года Т=1,8 месяца Сводная таблица экономических показателей Таблица 4.1.
ПоказателиЗначение
Капитальные затраты, руб2153449
Текущие годовые затраты, руб1933928,5
Межремонтный период до совершенствования, сутки316
Межремонтный период после усовершенствования, сутки358
Экономический эффект, руб75986647
Чистая прибыль, руб14460986
Срок окупаемости, год0,15
4. ЭКОНОМИЧЕСКИЙ ЭФФЕКТ ОТ УСОВЕРШЕНСТВОВАНИЯ КОНСТРУКЦИИ ЭЦН На месторождениях, разрабатываемых и эксплуатируемых НГДУ «Лянторнефть» дебет скважин по сравнению с прошлыми годами падает, что дает основанием использовать на скважинах электроцентробежные насосы с меньшей подачей. При эксплуатации скважин УЭЦН М-30-1300 повышается межремонтный период и наработка на отказ. Переводим подачу на 30 м/сут. Этим мы получаем насос с подачей 30 м/сутки для использования на малодебетных скважинах. За счет этого мы получаем экономию денежных средств, так, как не приходится запускать с заводов электроцентробежные насосы для малодебетных скважин. Экономический эффект ожидается за счет: -увеличение наработки на отказ; -уменьшение числа текущих ремонтов; -предотвращение затрат, связанных с закупкой УЭЦН-30 на заводах. Методика расчета экономического эффекта Экономический эффект определяется по формуле Эт=Рг-Зг (4.1.) Кр+Ен где, Рг – стоимостная оценка годовых результатов Зг – неизменные по годам годовые затраты; Кр – норма амортизации с учетом фактора времени Ен – норматив для приведения к расчетному году Стоимостная оценка годовых результатов: от количества ремонтов Рг1=(365365 ) *Срем. (4.2.) МРПб МРПсов. где, МРПб – базовый межремонтный период; МРПсов.–межремонтный период усовершенствованного оборудования Срем. – стоимость текущего ремонта Неизменные по годам годовые затраты: Зг=Иг+(Кр+Ен)*К (4.3) где, Иг – годовые текущие затраты К – капитальные затраты Годовые текущие затраты: К1=1,2 ( Зср. *L + 0,395 * Зср. * L) (4.4) 166 166 где, К1 – капитальные затраты, связанные с изготовлением рабочей ступени; Зср – средняя затрата L – длительность изготовления Капитальные затраты на материалы, примененные при изготовлении рабочей ступени: К2=m*c*Kи (4.5) где, m – масса материалов; c – стоимость материалов; Ки- коэффициент, учитывающий, что часть материалов расходуется при изготовлении. К=К1+К2 (4.6) К=n*(К1+К2) (4.7) где, -n - количество рабочих ступеней. Годовая прибыль, остающаяся в распоряжении предприятия: Пt=Bt – Ct – Ht (4.8) где, Bt – выручка от реализации продукции, полученной с применением мероприятий НТП, без акцизов и налогов на добавочную стоимость; Ct – себестоимость продукции; Ht – налоги, общая сумма. Срок возврата затрат: Т= К (4.9) П+А где, П – прибыль чистая, получаемая за счет реализации мероприятия за год; А – сумма амортизации за год. Исходные данные: Стоимость ЭЦН – 50-1300 – 1320400 руб Стоимость ЭЦН - 30-1300 – 18900000 руб m1 – масса рабочего колеса, изготовляемого из полиамида. m1=0,158 г С – стоимость полиамида С=1500000 руб за тонну m2 – масса направляющего аппарата, изготовляемого из полиамида. m2=320 г. Средняя заработная плата: Зср.=1800 руб Длительность изготовления рабочей ступени L=1 час Межремонтный период базовый: МРПб=316 суток Межремонтный период совершенствованного оборудования: МРПсов.=358 суток Стоимость текущего ремонта (одного): Т = 72 часа Среднесуточный дебит : Q=35 м/сут Стоимость нефти на внутреннем рынке: С = 500000 резв./тонну Себестоимость нефти: Ct=287274 руб/т Расчет экономического эффекта Стоимостная оценка годовых результатов: от количества ремонтов: Рг1= ( 365365 ) *Срем. МРПб МРПсов. МРПб=316 суток МРПсов.=358 суток Ср=1150000 резб. Рг1= (365365) *1150000 317 358 Рг1=156400 руб Рг2 берем из 40% от стоимости ЭЦН – 50-1300 и стоимости ЭЦн – 30-1300. Рг2=0,4*13204000+18900000=2418600 руб Рг=Рг1+Рг2 Рг=156400+24181600=24338000 руб Расчет затрат: Зг=Иг + (Кр+Ен)*К Иг=ΔР*Т*Q*Сп Сп3=55% от себестоимости 287274 руб/т Иг=0,136*3,0830,0*0,55*287274 Иг=1933928,5 руб Затраты на изготовление рабочей ступени К1=1,2 *(1,395 * Зср. *L) 166 Зср.=1800000 руб L=1 час К1=1,2 * 1,395 * 1800000*1 166 К1=18151,719 руб Затраты на материалы, примененные при изготовлении рабочей ступени: К2=m*С*Ки m=m1+m2 m=0,320+0,158 m=0,478 К2=0,478*10-3 *1500000*1,5=1075,5 руб К=112*19227,219 К=2153449 руб Зг=Иг + (Кр+Ен)*К Зг=1933928,5 + (1+0,1)*2153449 Зг=4292722,4 руб. Эффект рассчитывается для срока в 5 лет, срока амортизации оборудования типа УЭЦН Кр=0,1638 Ен=0,1 Эт=24338000 - 4292722,4 0,1638 + 0,1 Эт=7598647 руб Прибыль, остающаяся в распоряжении предприятия: Пt=Bt – Ct – Ht Формула (4.8) общая для расчета, ее можно разложить: Пт=Рг2Иг (4.10) где, Пт – прибыль без налогов Текущая чистая прибыль: Пч=0,65 * Пт Рг2=24181600 руб Иг=1933928,5 руб Пt=24181600 – 1933928,5 Пt=22247671 руб Пч=0,65* Пт Пч=0,65 * 22247671 Пч=14460986 руб. Срок возврата затрат Т = К П+А К=2153449 руб Пч=14460986 руб А=20% от К А=430689,8 руб Т= 2153449 14460986+430689,8 Т = 2153449 14891675 Т=0,15 года Т=1,8 месяца Сводная таблица экономических показателей Таблица 4.1.
ПоказателиЗначение
Капитальные затраты, руб2153449
Текущие годовые затраты, руб1933928,5
Межремонтный период до совершенствования, сутки316
Межремонтный период после усовершенствования, сутки358
Экономический эффект, руб75986647
Чистая прибыль, руб14460986
Срок окупаемости, год0,15
5. БЕЗОПАСНОСТЬ и ЭКОЛОГИЧНОСТЬ ПРОЕКТА Введение. Основными законодательными актами по охране труда в нашей стране являются Конституция России, Основы законодательства и др. в этих документах отражены правовые вопросы охраны труда и здоровья трудящихся. На основании вышеперечисленных источников, а также исходя из соответствующих правил безопасности и норм производственной санитарии в данном проекте нами разрабатываются основные мероприятия по созданию безопасных условий работы операторов при обслуживании скважин, оборудованных УЭЦН. Всякая деятельность протекает из определенных мотивов и направлена на достижение конкретных целей. Жизнедеятельность – активное отношение человека к окружающему миру для целесообразного его преобразования. Абсолютно безопасной деятельности не существует. По данным Госкомстата, по различным причинам в Российской Федерации на производстве ежегодно травмируется 650-700 тысяч человек, 15-16 тысяч человек с летальным исходом, 6 млн. человек работают во вредных условиях, более 700 тысяч единиц оборудования и 61 тысяча зданий и сооружений не отвечает требованиям безопасности. В среднем, ежегодно происходит около 500 тысяч пожаров, основными причинами этих негативных явлений являются: - недостаточный уровень обучения и квалификации персонала; - несоответствие технологических процессов современным требованиям безопасности; - недостаточное оснащение производства системами очистки выбросов; - устаревшее оборудование; В данном случае, описывается несколько мероприятий по улучшению охраны и условий труда, охраны окружающей среды, предложены возможные чрезвычайные ситуации и их предотвращение. 5.1. Анализ и оценка опасностей при выполнении работ, связанных с обслуживанием скважин, оборудованных УЭЦН. Одна из главных особенностей условий труда операторов по добыче нефти – это работа, в основном, на открытом воздухе (на кустах скважин), а также работа связанная с перемещениями на территории объекта и между объектами (кустами), частыми подъемами на специальные площадки, находящиеся на высоте. Поэтому в условиях сурового климата Западной Сибири и Крайнего Севера с низкими температурами (зимой до –500С) и высокой влажностью (летом до 100%) играет метеорологические факторы. При низкой (сверхдопустимых норм) температуре окружающей среды тепловой баланс нарушается, что вызывает переохлаждение организма, ведущее к заболеванию. В случае низкой температуры воздушной среды уменьшается подвижность конечностей в следствии интенсивной теплоотдачи организм, что сковывает движения. Это может послужить причиной несчастных случаев и аварий. При длительном пребывании работающего в условиях низкой температуры и, следовательно, переохлаждении организма возможно возникновение различных острых и хронических заболеваний: воспаление верхних дыхательных путей, ревматизм и другие. Результатами многократного воздействия низких температур являются пояснично-крестцовый радикулит и хроническое повреждение холодом (ознобление). При высокой температуре снижаются внимание и скорость реакции работающего, что может послужить причиной несчастного случая и аварии. При работе в летнее время при высокой температуре (до +50 С) возможны перегревания организма, солнечные и тепловые удары. Кусты, как правило, засыпаются песком, поэтому при сильных ветрах случается поднятие частиц песка и пыли, которые могут попасть в глаза и верхние дыхательные пути. Нормирование метеорологических параметров устанавливает ГОСТ 12.1.005-76. В ходе производственных операций рабочие могут подвергаться вредных газов и паров нефти, источником которых являются нарушения герметичности фланцевых соединений, механической прочности фонтанной арматуры (свище, щели по шву) вследствие внутренней коррозии или износа, превышения максимально допустимого давления, отказы или выходы из строя регулирующих и предохранительных клапанов. Пары нефти и газа при определенном содержании их в воздухе могут вызвать отравления и заболевания. При постоянном вдыхании нефтяного газа и паров нефти поражается центральная нервная система, снижается артериальное давление, становится реже пульс и дыхание, понижается температура тела. Особенно опасен сероводород – сильный яд, действующий на нервную систему. Он нарушает доставку тканям кислорода, раздражающе действует на слизистую оболочку глаз и дыхательных путей, вызывает острые и хронические заболевания, ПДК Н2S – 0,1 мг/м3 (ГОСТ 12.1.005-76.) Специфическая особенность условий эксплуатации нефтяных скважин – высокое давление на устье, которое доходит до 30 МПа. В связи с этим любое ошибочное действие оператора при выполнении работ на устье скважины может привести к опасной аварии. Высокое давление и загазованность указывают на повышенную пожаро-и взрывоопасность объекта. Эксплуатация скважин с УЭЦН характеризуется с наличием высокого напряжения в силовом кабеле. Причем станция управления и скважина оборудования ЭЦН обычно не находятся в непосредственной близости друг от друга и часть кабеля проходит по поверхности, что увеличивает зону поражения электротоком, а следовательно и вероятность несчастного случая. Причиной несчастного случая может быть также неудовлетворительное состояние объекта с позиции санитарии, его чрезмерная захламленность и замазученность, плохая подготовка скважин к замерам пластового давления. Таким образом, мы выяснили основные факторы производственной среды, влияющие на здоровье и работоспособность операторов в процессе труда: 1. метеорологический фактор. 2. Вредное влияние паров нефти и газа. 3. Высокое давление. 4. Повышенная пожаро-и взрывоопасность. 5. Наличие высокого напряжения. 6. Причины организационного характера. 5.2. Расчет заземления электрооборудования. Для предохранения рабочих от поражения электрическим током электрооборудование УЭЦН должно быть надежно заземлено. В соответствии с ГОСТом 12.1.006-84 выполнен расчет заземляющего устройства станции управления ЭЦН. Заземление КТПН осуществляется электродами из круглой стали d=12 мм, l=5 м, забиваемых в землю на глубину 5,7 м и соединенных стальной полосой 40х4 мм. Сопротивление заземляющего устройства должно быть не более 4 Ом в любое время года. все соединения выполняются сваркой согласно ПЭУ. После устройства контура заземления необходимо замерить сопротивление и, если оно окажется больше допустимого, забить дополнительные электроды. Расчет производится в соответствии «Типовых расчетов по электрооборудованию». Сопротивление растеканию тока одиночных стержневых заземлителей определяется по формуле: Rо.с.=ρ*Кс (ln 2l + 1 ln 4t+l (5.1.) 2πl d 2 4t-l где ρ – удельное сопротивление грунта, 1*10-4ом*см; Кс-коэффициент сезонности, для I климатической зоны Кс =1,65; l – длина стержня, 500 см; d - диаметр стержня, 1,2 см; t – глубина залегания, 570 см; Rс=1*104*1,65 (ln 2*500 +1/2 ln 4*570 +500) = 37,5 Ом 2*3,148500 1,2 4*570-500 Необходимое количество стержней:
n=
Rо.с. ηсR3 (5.2.) где, η – коэффициент использования стержневых заземлителей, 0,61; R3- сопротивление, оказываемое заземляющим устройством расте- канию тока, 4 Ом;
=16
n=
37,5 0,61*4 Сопротивление всех стержней: Rс=Rо.с./n* ηc=37,5/16*0,61=3,8 Ом Сопротивление растекания горизонтального (протяжного) заземлителя определяется по формуле: Rn= 0,366 * ρрасч./ln * lg lg2/dt1 (5.3.) где, ln – общая длина горизонтального заземлителя (полосы 40х4 мм), 100000 см; ρрасч = ρ* Кс=104*5 ом*см, Кс=5 - для I климатической зоны; t1 – глубина залегания протяжного заземлителя;, 70 см; Rn= 0,366* 5*10-4/100000 * 1000002/1,2*70=14.3 Ом. Действительное сопротивление растеканию протяжного заземлителя с учетом коэффициента использования ηn=0,32 Rnд=Rn/ ηn=14,3/0,32=44,7 Ом (5.4.) Общее сопротивление заземляющего устройства: R32=Rc*Rпд/ Rc +Rпд= 3.8* 44,7/3,8+44,7=3,5 Ом (5.5.) Из расчета следует, что полученное значение сопротивления не превышает допустимого, а следовательно будет обеспечено полноценное заземление объекта, соответствующее ГОСТу 12.1.006-84. 5.3. Основные мероприятия по обеспечению безопасности условий труда операторов. Основное условие безопасности при обслуживании нефтяных скважин – соблюдение трудовой и производственной дисциплины всеми работающими на них. Все работы связанные с эксплуатацией УЭЦН (обслуживание, перевозка, монтаж, демонтаж) должны выполняться в соответствии с правилами безопасности и инструкциям по охране труда для рабочих цехов добычи нефти и ППД, а также следующими документами: 1. Правило безопасности в нефтяной и газовой промышленности, утверждение Госгортехнадзором. 2. Правила технической эксплуатации электроустановок, утвержденные Госэнергонадзором. 3. Правила техники безопасности при эксплуатации электроустановок, утвержденные Госэнергодзором. 4. Правила устройства электроустановок, утвержденные Госэнергонадзором. 5. Руководство по эксплуатации УЭЦН РЭ, утвержденное ОКБ БН. На работу следует принимать лиц не моложе 18 лет, годных по состоянию здоровья, соответственным образом обученных и прошедших инструктаж по технике безопасности. Перевозка рабочих на место и обратно должна осуществляться на бортовых автобусах или специально оборудованных грузовых бортовых автомобилях, а в труднодоступных местностях – на вездеходах. Продолжительность рабочего времени установлена трудовым законодательством и не должна превышать 41 час в неделю. Рабочие должны обеспечиваться необходимой спецодеждой, соответствующей времени года (лето – роба х/б, сапоги, головной убор, рукавицы, а также средства защиты от кровососущих насекомых; зимой – шапка-ушанка, валенки, ватные штаны, шуба, ватные рукавицы). На каждом кусте должна быть оборудована пульт-будка с имеющимися в наличии аптечкой, бачком с питьевой водой, носилками, а также мебелью для отдыха. При работе в темное время суток объект должен быть освещен, во избежании травматизма. В качестве осветительных приборов применяются фонари и прожектора. Норма освещенности не ниже 10 лк (СНиП I – 4-79). Особое внимание следует обратить на санитарное состояние территории куста, не допускать его захламления и замазученности, зимой необходимо регулярно расчищать снежные заносы на подходах к скважины. Содержание нефтяных паров и газов в воздухе рабочей зоны не должно превышать ПДК (углеводороды предельно С-С10 в пересчете на С – 300 мг/м3 , ГОСТ 12.1.005-76). Во время ремонта скважин при наличии в воздухе рабочей зоны нефтяных паров и газов, превышающих ПДК, необходимо заглушить скважину жидкостью соответствующих параметров и качества. Работы в загазованной зоны должны проводиться в соответствующих противогазах. К монтажу (демонтажу) погружного агрегата УЭЦН и его обслуживанию допускается электротехнический персонал, знающий схемы применяемые станций управления, трансформаторов, подстанций погружных насосов (КТПН), конструкции по их эксплуатации, прошедший производственное обучение и стажировку на рабочем место, а также проверку знаний с присвоением квалификационной группы по электробезопасности. Для измерения буферного давления и давления в затрубном пространстве на скважинах оборудованных УЭЦН должны быть установлены стационарные манометры с трехходовыми кранами. Конструкция устьевого оборудования должна обеспечить возможность снижения давления в затрубном пространстве, а так же закачку жидкости для глушения скважины. Наземное оборудование УЭЦН должно быть установлено в специальной будке или на открытой местности на расстоянии не менее 20 м от устья скважины. При установке наземного оборудования в будке станция управления должна быть расположена так, чтобы при открытых дверцах обеспечивался свободный выход из будки. При установке электрооборудования на открытой местности оно должно иметь ограждение и предупреждающий знак «Осторожно! Электрическое напряжение!». Намотка и размотка кабеля на барабан кабеленаматывателя должна быть механизирована. Производить намотку (размотку) кабеля вручную, а также тормозить барабан руками, доской или трубой запрещается. Все открытые движущиеся части механизмов кабеленаматывателя могущие служить причиной травмирования должны иметь ограждения. Прокладка, перекладка кабелей УЭЦН по эстакаде рядом с действующими кабелями, находящимися под напряжением, а также перекладка кабелей допускается в случае необходимости при выполнении следующих условий: - Работу должны выполнять рабочие, имеющие опыт прокладки кабелей, по наряду-допуску (распоряжению электротехнического персонала ЦБПО НПО под руководством лица с группой по электробезопасности не ниже V при напряжении выше 1000 В. - Работать следует в диэликтрических перчатках, поверх которых для защиты от механияческих поверждений одеваются брезентовые рукавицы. Санитраные нормы действия тока на организм, устанавливает ГОСТ 12.1.000-76. Таким образом в данном разделе разработаны основные мероприятия , которые обеспечат безопасные условия работы операторов при обслуживании скважин, оборудованных УЭЦН. 5.4. Общие требования к безопасности к рабочим цеха в подготовке и перекачке нефти (ППН) 1. К самостоятельной работе в цехе ППН допускаются лица: – достигшие 18-летнего возраста. – Прошедшие медицинское освидетельствование согласно приказа Минздрава ССР № 700 от 19.06.84; – прошедшие производственное обучение, обучение безопасным методам в проведении работ, стажировку (при необходимости) на рабочем месте и проверку знаний по технике безопасности; – имеющие удостоверение о проверке знаний по технике безопасности. 2. Через каждые 3 месяца рабочие должны проходить инструктаж по безопасному ведению работ и не реже 1 раза в год – проверку знаний. 3. При внедрении новых видов оборудования и механизмов, новых технологических процессов, а также при введении в действие новых правил и инструкций по охране труда рабочие должны пройти дополнительное обучение и инструктаж. 4. Внеочередную проверку знаний по технике безопасности рабочие должны пройти: - после обучения, вызванного изменением технологического процесса, внедрением новых видов оборудования и механизмов, введением в действие новых правил и инструкций; - по требованию или распоряжению руководителей предприятий и представителей службы надзора. 5. Приступая к работе, рабочие должны иметь при себе удостоверение о проверке знаний по технике безопасности. 6. При приеме смены рабочие обязаны ознакомится с заданиями и распоряжениями руководителей работ, с записями в вахтовом журнале и уяснить себе обстановку на объекте и на рабочем месте. При обнаружении какой-либо неисправности, не записанной в журнале, принимающий смену должен указать на нее сменяющемуся и вместе с ним сделать соответствующую запись в вахтовом журнале. 7. Не разрешается: - принимать или сдавать смену во время аварии и при ее ликвидации; - передавать смену рабочему, явившемуся в нетрезвом состоянии или больному. 8. Находясь на территории цеха ППН работающие должны соблюдать общие для всех правила поведения: - места открытого выделения газа надо обходить с наветренной стороны; - переходить через траншею, трубопроводы надо только в специально указанных местах, оборудованных переходами. 9. Рабочие цеха ППН перед началом работы обязаны: проверить состояние и исправность работающего и резервного оборудования (насосов, запорной арматуры, КИПиА и т.п.), чистоту рабочего места, производственных помещений и территории наличие инструмента и вспомогательного инвентаря, исправность действия вентиляционных установок, наличие и состояние средств индивидуальной защиты; привести в порядок спецодежду и др.средства индивидуальной защиты; проверить наличие и исправность пожаротушения и инструментов, их соответствие характеру работы, наличие и укомплектованность аптечки. 10. Рабочие обязаны следить за чистотой рабочих мест и всего оборудования. Рабочие площадки, лестницы и переходы необходимо очищать от грязи, снега и льда. - загромождение лестниц и площадок, проходов между трубопроводами и др. оборудованием, мешающие нормальному обслуживанию и ремонту не допускается. 11. Освещение объектов ППН должно быть выполнено во взрывобезопасном исполнении. Осветительная проводка должна прокладываться в герметичных газовых трубах, выключатели должны быть во взрывоопасном исполнении и установлены вне помещения. В качестве аварийного освещения могут применятся только аккумуляторные фонари во взрывобезопасном исполнении напряжением 12 Вт. 12. Рабочие должны иметь полагающиеся по нормам спецодежду, спецобувь, рукавицы и другие средства индивидуальной защиты, обеспечивающие безопасность. Спецодежду следует носить в застегнутом виде, она не должна меть свисающих концов. 13. При опасности попадания инородных тел, вредных жидкостей, паров, газа, раздражения глаз сильным световым излучением необходимо пользоваться соответствующими защитными очками. 14. При работе в колодцах, аппаратах, емкостях и других плохо проветриваемых местах необходимо применять шланговые противогазы. 15. Лица, допущенные к работам на объектах с возможным выделением сероводорода, должны иметь при себе исправные средства индивидуальной защиты (противогазы марки КД). Промышленные фильтрующие противогазы применяют в том случае, если в воздухе содержится не менее 18% объемных кислорода, а концентрация вредных газов не превышает 0,5% объемных. 16. Рабочие должны следить за состоянием предохранительной арматуры, наличием и исправностью манометром, обращать внимание на наличие и целостность пломб. 17. Не допускается эксплуатация аппаратов, емкостей и оборудования при неисправных предохранительных клапанах, отключающих и предохранительных устройствах, при отсутствии или неисправности контрольно-измерительных приборов и средств автоматики, а также работа с неисправным инструментом. 18. Все движущиеся части механизмов должны быть ограждены. Выступающие и вращающиеся детали должны быть закрыты по всей окружности вращения сплошными кожухами. 19. Запрещается эксплуатация неисправного оборудования отключающих и предохранительных устройств, неисправных контрольно-измерительных приборов и средств автоматики, а также работа неисправным инструментом. 20. Корпуса электрооборудования и пусковой аппаратуры должны быть заземлены. 21. Перед пуском механизмов в работу необходимо проверить их исправность. Пускать в работу механизмы следует, только убедившись, что у движущихся частей нет людей. И только после подачи предупредительного знака (сигнала). 22. Во время работы механизма запрещается: - производить ремонт их или крепление каких-либо частей; - чистить и смазывать движущиеся части вручную; - снимать ограждения или отдельные их части и проникать за ограждения; - тормозить движущиеся части механизмов подкладыванием труб, ваг и других предметов; - переходить через приводные ремни, цепей или под ними; - направлять, надевать, сбрасывать, натягивать или ослаблять ременные передачи; - находится в опасной зоне. 23. Ремонтные работы должны проводится в дневное время. При необходимости ремонтов в ночное время место работы должно быть освещено. 24. Работы по ремонту оборудования, связанные с применением открытого огня и возможностью образования открытого искрения, должны осуществляться по наряду- допуску на производство газоопасных работ или письменному разрешению главного инженера, согласованного с главным энергетиком предприятия и местной пожарной охраной. 25. Ремонтные работы в котловане, а также в нефтяных и газовых колодцах разрешается выполнять при соблюдении следующих условий: - бригада рабочих должна состоять не менее чем из двух человек (работающий и наблюдающий), обеспеченных соответствующими средствами индивидуальной защиты; - перед началом работ ответственный за их проведение должен спросить исполнителя о его самочувствии; - перед работой котлован или колодец проветрить, а перед сварочной работой – провести анализ воздушной среды; - проверить исправность шлангового противогаза, спасательного пояса и сигнально-спасательной веревки; - сроки единовременного пребывания работающего в шланговом противогазе должен превышать 20 минут. 26. В случае гидратообразования или замораживания участка трубопровода, обвязки насосов, запорной арматуры отогревать их следует водой или паром. Перед отогревом участок должен быть отключен от работающей системы. 27. При пропарке емкостей, аппаратов запрещается поднимать давление в них: пар должен иметь свободный выход. При пропарке труб запрещается стоять с противоположного конца, тем более, устранять закупорку пропариваемых труб разрыхлением различными предметами. 28. Пропуск газа и нефтепродуктов через фланцевые соединения, сальники, задвижки и другие неплотности необходимо своевременно устранять. 29. При необходимости проведения ремонтных работ на трубопроводах находящихся под давлением, подлежащий ремонту участок необходимо отключить задвижками с установкой маркированных заглушек после снижения в нем давления до атмосферного. 30. Закрывать (открывать) запорную арматуру следует плавно, без рывков, пользуясь при необходимости специальным (штурвальным) ключом. 31. В случае возникновения аварийной ситуации, связанной с повышением содержания сероводорода в воздухе, необходимо: - немедленно одеть противогаз; - прекратить все работы в опасной зоне; - сообщать об этом ответственному руководителю работ; - обозначить опасную зону предупреждающими знаками; - дальнейшие работы производить по плану ликвидации возможных аварий. 32. При аварии рабочие обязаны действовать в соответствии с планом ликвидации аварий; сообщить о происшедшей аварии диспетчеру, вывести людей из помещения или опасной зоны и при необходимости, в целях предупреждения осложнений, отключить технологическое оборудование. 33. При возникновении пожара необходимо немедленно вызвать пожарную охрану и приступить к тушению огня имеющимися на объекте противопожарными средствами. 34. При несчастном случае необходимо оказать пострадавшему доврачебную помощь, вызвать, если необходимо скорую медицинскую помощь, сообщать о происшедшем руководителю работ или начальнику цеха и по возможности сохранить обстановку на рабочем месте такой, какой она была в момент несчастного случая. 35. В случае возникновения аварийной ситуации смена, в которой возникла авария, не сдает смену до ликвидации аварии. Принимающая смена включается в работу по ликвидации аварии. 5.5.Характеристика условий труда. Характеристика выбросов вредных веществ в атмосферу Таблица 5.1.
Вредные вещества

Кол-во вредных

веществ отходящих от всех источников

В том числе: выделяются без очисткиВсего выброшено в атмосферуЛимит выброса
Наименование
Окислы азота9,3559,3559,3559,355
Сернистый ангидрид73,98573,98573,98573,985
Окись углерода53,6253,6253,6253,62
Пятиокись ванадия0,2960,2960,2960,296
Окись железа0,6160,6160,6160,616
Стирол0,2220,2220,2220,222

Страницы: 1, 2, 3, 4, 5, 6


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  бесплатно рефераты скачать              бесплатно рефераты скачать

Новости

бесплатно рефераты скачать

© 2010.