бесплатно рефераты скачать
  RSS    

Меню

Быстрый поиск

бесплатно рефераты скачать

бесплатно рефераты скачатьХаос и порядок. Порядок и беспорядок в природе

Вселенную к состоянию полного равновесия.

Существует множество способов убедиться в том, что разветвленная

система (сеть) взаимозависимых простых процессов может привести к

возникновению сложной структуры и тем самым ввести в заблуждение

“стороннего наблюдателя”, побуждая его предположить существование

определенного замысла и “творца”.

В мире нет ничего более удивительного, чем сознание, разум человека;

тем большее удивление вызывает то, что в своей глубинной основе оно

обусловленно весьма простыми явлениями.

В процессе “разматывания” клубка событий локально возникают различные

структуры, и хотя все они преходящи, некоторые из них способны существовать

миллионы лет.

2. Хаос и мифы.

Во всех культурах всегда существовал креативный взгляд на

становление. Он представлялся, говоря современным системным языком,

креативной триадой: Способ действия + Предмет действия = Результат

действия, и закреплен в самих глагольных структурах языка; в корнях

двуполой асимметрии человека как биологического вида; в образах

божественного семейства древних религий : Озирис - Изида - Гор (Египет); "

Тот, кто создает безостановочно миры - троичен. Он есть Брама- Отец; он

есть Майя- Мать ; он есть Вишу- Сын; Сущность, Субстанция и Жизнь. Каждый

заключает в себе двух остальных и все три составляют одно в Неизреченном. "

(Упанишады). В космогонических мифах и философиях -- ТЕОС ( ЛОГОС) + ХАОС =

КОСМОС ( Платон, Аристотель, Плотин), Пуруша(дух) + Пракрити(материя) =

Браман (проявленная Вселенная) (Веды). Возникновение реальности как

одухотворение материи, отсюда и творчество как вдохновение, и душа в

христианстве как сплетение и борьба духовных и телесных (материальных)

начал в человеке.

Ветхозаветное начало творения: "Земля была безвидна и Дух летал над

Водами" . . . - и здесь из вод первозданного Хаоса родится определенность

земной тверди нашего Мира. И это не случайно, только так естественным

образом можно описать процесс возникновения чего либо вообще, когда

следствие порождено причиной, в свою очередь состоящей из двух начал -

активного и пассивного, имманентного любому действию.

Родоначальником всего живого и божественного в египетской религии

считается бог Атум. Согласно легенде, он также появился из хаоса.

3.Хаос и его проявления.

Хаотические эффекты, нарушавшие стройную картину классической физики

с первых дней становления теории, в XVII в воспринимались как досадные

недоразумения. Кеплер отмечал нерегулярности в движении Луны вокруг Земли.

Ньютон, по словам своего издателя Роджера Котеса, принадлежал к тем

исследователям, которые силы природы и простейшие законы их действия

"выводят аналитически из каких-либо избранных явлений и затем синтетически

получают законы остальных явлений". Но закон — однозначное и точное

соответствие между рассматриваемыми явлениями, он должен исключать

неопределенность и хаотичность Отсутствие однозначности в науке Нового

времени рассматривалось как свидетельство слабости и ненаучного подхода к

явлениям Постепенно из науки изгонялось все, что нельзя формализовать, чему

нельзя придать однозначный характер Так пришли к механической картине мира

и "лапласовскому детерминизму"

Необратимость процессов нарушила универсальный характер механических

законов. По мере накопления фактов менялись представления, и тогда Клаузиус

ввел "принцип элементарного беспорядка" Поскольку проследить за движением

каждой молекулы газа невозможно, следует признать ограниченность своих

возможностей и согласиться, что закономерности, наблюдаемые в поведении

массы газа как целого, есть результат хаотического движения составляющих

его молекул. Беспорядок при этом понимается как независимость координат и

скоростей отдельных частиц друг от друга при равновесном состоянии. Более

четко эту идею высказал Больцман и положил ее в основу своей молекулярно-

кинетической теории. Максвелл указал на принципиальное отличие механики

отдельной частицы от механики большой совокупности частиц, подчеркнув что

большие системы характеризуются параметрами (давление, температура и др ),

не применимыми к от дельной частице. Так он положил начало новой науке —

статистической механике Идея элементарного беспорядка, или хаоса устранила

противоречие между механикой и термодинамикой На основе статистического

подхода удалось совместить обратимость отдельных механических явлений

(движений отдельных молекул) и необратимый характер движения их

совокупности (рост энтропии в замкнутой системе).

В дальнейшем оказалось, что идеи хаоса характерны не только для

явлений тепловых, а более фундаментальны. При изучении теплового излучения

возникли противоречия: электромагнитная теория Фарадея — Максвелла

описывала обратимые процессы, но процессы обмена световой энергией между

телами, находящимися при разных температурах, ведут к выравниванию

температур, т е. должны рассматриваться как необратимые. Планк ввел

гипотезу "естественного излучения", соответствующую гипотезе молекулярного

беспорядка, смысл которой можно сформулировать так: отдельные

электромагнитные волны, из которых состоит тепловое излучение, ведут себя

независимо и "являются полностью некогерентными". Эта гипотеза привела к

представлению о квантовом характере излучения, которое обосновывалось с

помощью теории вероятностей Хаотичность излучения оказалась связанной с его

дискретностью Квантовый подход позволил Планку и Эйнштейну объяснить ряд

законов и явлений (закон Стефана — Больцмана, закон смещения Вина, законы

фотоэффекта и др.), которые не находили объяснения в классической

электродинамике(Отступления Луны от траекторий, рассчитанных по законам

ньютоновской механики, американский астроном Джордж Хилл в конце прошлого

века объяснил притяжением Солнца. Пуанкаре предположил, что вблизи каждого

тела есть некоторые малозаметные факторы и явления, которые могут вызвать

нерегулярности. Поведение даже простой системы существенно зависит от

начальных условий, так что не все можно предсказать. Решая задачу трех тел,

Пуанкаре обнаружил существование фазовых траекторий, которые вели себя

запутанно и сложно, образуя "нечто, вроде решетки, ткани, сети с бесконечно

тесными петлями; ни одна из кривых никогда не должна пересечь самое себя,

но она должна навиваться на самое себя очень сложным образом, чтобы

пересечь много, бесконечно много раз петли сети". В начале века на эту

работу особого внимания не обратили

Примерно в это же время Планк начал изучать другую хаотичность

классической науки и нашел выход в введении кванта, который должен был

примирить прежние и новые представления, но ни самом деле сокрушил

классическую физику. В строении атомов долгое время видели аналогию

Солнечной системы. Интерес к невозможности однозначных предсказаний возник

в связи с появлением принципиально иных статистических законов движения

микрообъектов, составляющих квантовую механику. В силу соотношений

неопределенности Гейзенберга необходимо сразу учитывать, что Moryi

реализовываться не точные значения координат и импульсов, а не которая

конечная область состояний Ар и Aq, внутри которой лежа1 начальные

координаты Яд и импульсы pp. При этом внутри выделенной области они

распределены по вероятностному закону По мере эволюции системы

увеличивается и область ее состояний Лр и Aq. На небольших временных

интервалах неопределенность состояния будет нарастать медленно, и движение

системы будет устойчивым. Для таких систем классическая механика

плодотворна.

В 60-е годы 6ыло установлено, что и в простых динамических системах,

которые считались со времен Ньютона и Лапласа подчиняющимися определенным и

однозначным законам механики, возможны случайные явления, от которых нельзя

избавиться путем уточнения начальных условий и исчерпывающим описанием

воздействий на систему. Такие движения возникают в простых динамических

системах с небольшим числом степеней свободы — нелинейных колебательных

системах как механических, так и электрических. Пример такого неустойчивого

движения — шарик в двух ямах, разделенных барьером (рис 1). При неподвижной

подставке шарик имеет два положения равновесия. При колебаниях подставки он

может начать

б

[pic]

Рис. 1. Пример хаотического движения:

а — шарик в потенциальных ямах; б — шарик на плоскости со стенками

(биллиард Синая)

перепрыгивать из одной ямы в другую после совершения колебаний в одной из

ям. Периодические колебания с определенной частотой вызывают колебания с

широким спектром частот

Кроме того, на систему могут действовать и некоторые случайные силы,

которые даже при самой малой величине за длительное время действия приведут

к непредсказуемым результатам. Такие системы чувствительны не только к

начальным значениям параметров, но и к изменениям положений и скоростей в

разных точках траектории. Получается парадокс: система подчиняется

однозначным динамическим законам, и совершает непредсказуемые движения.

Решения динамической задачи реализуются, если они устойчивы. Например,

нельзя видеть сколь угодно долго стоящий на острие карандаш или монету,

стоящую на ребре. Но тогда задача из динамических переходит в

статистическую, т е. следует задать начальные условия статистическим

распределением и следить за его эволюцией. Эти случайные явления получили

название хаосов

Рис. 2 Фазовое пространство.

Эволюцию динамических систем во времени оказалось удобным

анализировать с помощью фазового пространства — абстрактного пространства с

числом измерений, равным числу переменных, характеризующих состояние

системы Примером может служить пространство, имеющее в качестве своих

координат координаты и скорости всех частиц системы Для линейного

гармонического осциллятора (одна степень свободы) размерность фазового

пространства равна двум (координата и скорость колеблющейся частицы) Такое

фазовое пространство есть плоскость, эволюция системы соответствует

непрерывному изменению координаты и скорости, и точка, изображающая

состояние системы, движется по фазовой траектории (рис. 2) Фазовые

траектории такого маятника (линейного гармонического осциллятора), который

колеблется без затухания, представляют собой эллипсы

В случае затухания фазовые траектории при любых начальных значениях

оканчиваются в одной точке, которая соответствует покою в положении

равновесия. Эта точка, или аттрактор, как бы притягивает к себе со временем

все фазовые траектории (англ to attract "притягивать") и является

обобщением понятия равновесия, состояние, которое притягивает системы

Маятник из-за трения сначала замедляет колебания, а затем останавливается

На диаграмме его состоянии (фазовой диаграмме) по одной оси откладывают

угол отклонения маятника от вертикали, а по другой — скорость изменения

этого угла Получается фазовый портрет в виде точки, движущейся вокруг

начала отсчета Начало отсчета и будет аттрактором, поскольку как бы

притягивает точку, представляющую движение маятника по фазовой диаграмме В

таком простом аттракторе нет ничего странного. В более сложных движениях,

например, маятника часов с грузом на цепочке, груз играет роль механизма,

подкачивающего энергию к маятнику, и маятник не замедляет колебаний. Если

запустить часы энергичным толчком маятника, он замедлится до темпа, который

обусловлен весом груза, после чего характер его движения останется

неизменным Если толчок будет слабым, маятник, замедляясь, вскоре

остановится Ситуации с сильным начальным толчком на фазовой диаграмме

соответствует спираль, обвивающаяся все более плотно вокруг круговой

орбиты, аттрактор будет в данном случае окружностью, т е объектом не более

странным, чем точка Разным маятникам соответствуют аттракторы, которые

называют предельными циклами Все фазовые траектории, соответствующие разным

начальным условиям, выходят на периодическую траекторию, которая отвечает

установившемуся движению если начальные отклонения были малыми, они

возрастут, а, если амплитуды были большими, то уменьшатся. Биение сердца

тоже изображается предельным циклом — установившимся режимом.

Если движение состоит из наложения двух колебаний разных частот, то

фазовая траектория навивается на тор в фазовом пространстве трех измерений.

Это движение устойчиво, а две фазовые траектории, начинающиеся рядом, будут

навиваться на тор, не уходя друг от друга. Ситуация соответствует

устойчивому установившемуся движению, к которому сама стремится.

В случае хаотического движения фазовые траектории с близкими

начальными параметрами быстро расходятся, а потом хаотически

перемешиваются, так как они могут удаляться только до какого-то предела из-

за ограниченности области изменений координат и импульсов. Поэтому фазовые

траектории создают складки внутри фазового пространства и оказываются

достаточно близко друг к другу. Так возникает область фазового

пространства, заполненная хаотическими траекториями, называемая странным

аттрактором. На рис 3 изображен такой аттрактор, полученный Э. Лоренцом на

ЭВМ. Видно, что система (изображаемая точкой) совершает быстрые

нерегулярные колебания в одной области фазового пространства, а затем

случайно перескакивает в другую область, через некоторое время — обратно.

Так динамический хаос обращается с фазовым пространством. При этом

образование складок возможно только при размерностях больших трех (только в

3-ем измерении начинают складываться плоские траектории). От этих

хаотичностей нельзя избавиться. Они внутренне присущи системам со странными

аттракторами. Хаотические движения в фазовом пространстве порождают

случайность, которая связана с появлением сложных траекторий в результате

растяжения и складывания в фазовом пространстве.

[pic]

Рис 3. Аттрактор Лоренца.

Важнейшим свойством странных аттракторов является фрактальность Фракталы —

это объекты, проявляющие по мере увеличения все большее число деталей. Их

начали активно исследовать с появлением мощных ЭВМ. Известно, что прямые и

окружности — объекты элементарной геометрии — природе не свойственны.

Структура вещества чаще принимает замысловато ветвящиеся формы,

напоминающие обтрепанные края ткани. Примеров подобных структур много это и

коллоиды, и отложения металла при электролизе, и клеточные популяции.

4. Причины хаоса.

Идеи Брюссельской школы, существенно опирающиеся на работы Пригожина,

образуют новую, всеобъемлющую теорию изменений.

В сильно упрощенном виде суть этой теории сводится к следующему.

Некоторые части Вселенной действительно могут действовать как механизмы.

Таковы замкнутые системы, но они в лучшем случае составляют лишь малую долю

физической Вселенной. Большинство же систем, представляющих для нас

интерес, открыты - они обмениваются энергией или веществом ( можно было бы

добавить: и информацией) с окружающей средой. К числу открытых систем, без

сомнения, принадлежат биологические и социальные системы, а это означает,

что любая попытка понять их в рамках механической модели заведомо обречена

на провал.

Кроме того, открытый характер подавляющего большинства систем во

Вселенной наводит на мысль о том, что реальность отнюдь не является ареной,

на которой господствует порядок, стабильность и равновесие: главенствующую

роль в окружающем нас мире играют неустойчивость и неравновесность.

Если воспользоваться терминологией Пригожина, то можно сказать, что

все системы содержат подсистемы, которые непрестанно флуктуируют. Иногда

отдельная флуктуация или комбинация флуктуацией может стать (в результате

положительной обратной связи) настолько сильной, что существовавшая прежде

организация не выдержит и разрушится. В этот переломный момент (который

авторы книги называют особой точкой или точкой бифуркаци ) принципиально

невозможно предсказать, в каком направлении будет происходить дальнейшее

развитие: станет ли состояние системы хаотическим или она перейдет на

новый, более дифференцированный и более высокий уровень упорядоченности или

организации, который авторы называют диссипативной структурой. (Физические

или химические структуры такого рода получили название диссипативных

потому, что для их поддержания требуется больше энергии, чем для

поддержания более простых структур, на смену которым они приходят).

Один из ключевых моментов в острых дисскусиях, развернувшихся вокруг

понятия диссипативной структуры, связан с тем, что Пригожин подчеркивает

возможность спонтанного возникновения порядка и организации из беспорядка и

хаоса в результате процесса самоорганизации.

Обобщая, мы можем утверждать, что в состояниях, далеких от

равновесия, очень слабые возмущения, или флуктуации, могут усиливаться до

гигантских волн, разрушающих сложившуюся структуру, а это проливает свет на

всевозможные процессы качественного или резкого ( не постепенного, не

эволюционного) изменения. Факты, обнаруженные и понятые в результате

изучения сильно неравновесных состояний и нелинейных процессов, в сочетании

с достаточно сложными системами, наделенными обратными связями, привели к

созданию совершенно нового подхода, позволяющего установить связь

фундаментальных наук с “переферийными” науками о жизни и, возможно, даже

понять некоторые социальные процессы.

5. Роль энтропии как меры хаоса.

Знаменитое второе начало (закон) термодинамики в формулировке

немецкого физика Р. Клаузиуса звучит так: "Теплота не переходит

самопроизвольно от холодного тела к более горячему".

Закон сохранения и превращения энергии (первое начало термодинамики),

в принципе, не запрещает такого перехода, лишь бы количество энергии

сохранялось в прежнем объеме. Но в реальности это никогда не происходит.

Данную односторонность, однонаправленность перераспределения энергии в

замкнутых системах и подчеркивает второе начало термодинамики.

Для отражения этого процесса в термодинамику было введено новое

понятие - "энтропия". Под энтропией стали понижать меру беспорядка системы.

Более точная формулировка второго начала термодинамики приняла такой вид:

при самопроизвольных процессах в системах, имеющих постоянную энергию,

энтропия всегда возрастает.

Физический смысл возрастания энтропии сводится к тому, что состоящая

из некоторого множества частиц изолированная (с постоянной энергией)

система стремится перейти в состояние с наименьшей упорядоченностью

движения частиц. Это и есть наиболее простое состояние системы, или

термодинамическое равновесие, при котором движение частиц хаотично.

Максимальная энтропия означает полное термодинамическое равновесие, что

эквивалентно хаосу.

Однако, исходя из теории изменений Пригожина, энтропия - не просто

безостановочное соскальзывание системы к состоянию, лишенному какой бы то

ни было организации. При определенных условиях энтропия становится

прародительницей порядка.

Список использованной литературы.

1. Барвинский А.О., Каменщик А.Ю., Пономарёв В.Н. Фундаментальные

проблемы интерпретации квантовой механики. Современный подход – М.:

Изд-во МГПИ, 1988

2. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т.1, Механика – М.:

Наука, 1988

3. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т.3, Квантовая

механика. Нерелятивистская теория – М.: Наука, 1990

4. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т.5, Статистическая

физика. Часть 1 – М.: Наука, 1988

5. Пригожин И., Стенгерс И. Время, хаос, квант – М.: Прогресс, 1994

6. Эйнштейн А. Собрание сочинений в четырёх томах, т.3 – ст. Испускание и

поглощение излучения по квантовой теории – М.: Наука, 1966

Страницы: 1, 2


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  бесплатно рефераты скачать              бесплатно рефераты скачать

Новости

бесплатно рефераты скачать

© 2010.